CompSci 516
Data Intensive Computing Systems

Lecture 22
Acyclic Joins
and
Worst Case Join Results

Instructor: Sudeepa Roy
Announcements

• Final exam according to the university exam schedule:
 – Monday, December 19, 9:00 am to 12 noon
• HW3 due tonight: 11/16
• Feedback on midterm project reports by tonight
 – you can schedule a meeting before the thanksgiving break
• Advanced topics covered for the next 2.5 lectures
• Project presentations and demos for the last 1.5 lectures
 – 10 projects
 – 10 mins each
• The most popular project as decided by your votes gets a prize!
 – You will give ratings to projects other than yours and the average will be taken
 – Unrelated to the grade of the project (given by the instructor)
Where are we now?

- Relational Model and Query Languages
 - SQL, RA, RC
 - Postgres (DBMS)
 - HW1
- DBMS Internals
 - Storage
 - Indexing
 - Query Evaluation
 - Operator Algorithms
 - External sort
 - Query Optimization
- Database Normalization

- Transactions
 - Basic concepts
 - Concurrency control
 - Recovery
- Query processing with multiple machines
 - Map-reduce and spark
 - HW2
 - Parallel DBMS
 - Distributed DBMS
- NOSQL
 - HW3
- Data warehouse and Cube
- Association Rule Mining
- Datalog
Next few lectures

• Overview of a few other research areas and topics in databases
 – lecture slides will be sufficient as reading material
 – additional reading material will be posted on the website

• Topics to be covered
 – Acyclic joins and new worst case join results (today)
 – Data integration
 – Schema matching and mapping
 – Data cleaning

Duke CS, Fall 2016
CompSci 516: Data Intensive Computing Systems
Today’s topics

• Acyclic joins and query hypergraphs
 – (Mostly) using slides by Jeff Ullman and Georg Gottlob

• Worst case join results
 – Using slides by Ashwin Machanavajjhala

• These two topics will also give you an idea of research in database theory
 – and how they have impact on efficiency in database systems
Query Hypergraphs and Acyclic Joins

Based on slides by
Jeff Ullman and Georg Gottlob
Data and Query Complexity

• Inputs
 – Database D = \{R_1, \ldots, R_k\}
 – (Boolean) Query Q, size \sim k
 – # of tuples = n
 – Size of active domain |adom|

• Vardi’82 : complexity of answering if Q(D) is non-empty

• Data complexity
 – Fix query, k = constant, parameter = n

• Query or expression complexity
 – Fix D or n or |adom|

• Combined complexity
 – Both n and k are variables
Complexity of evaluating CQ

• Arbitrary CQ in Datalog notation

 Q(): R1(x1), R2(x2), ..., Rk(xk)

 e.g.

 Q(): - Sailors(sid, name, age), Boats(bid, `blue’), Reserve(sid, bid, `Monday’)

 Q(): - R(a, b, c), S(c, d), T(a, d)

• What is a trivial algorithm?
Complexity of evaluating CQ

• **Arbitrary CQ** $Q() : \text{R1}(x_1), \text{R2}(x_2), ..., \text{Rk}(x_k)$

• **What is a trivial algorithm?**

- Iterate over all possible combinations of values of variables from their active domains
- Check if they belong to (satisfy) $\text{R1}, ..., \text{Rk}$

Complexity ~ $O(n^k)$

Polynomial data complexity (n)

Exponential query complexity (k)
Complexity of evaluating CQ

- **Arbitrary CQ** $Q() :- R_1(x_1), R_2(x_2), ..., R_k(x_k)$
- **What is a trivial algorithm?**

- Iterate over all possible combinations of values of variables from their active domains
- Check if they belong to (satisfy) $R_1, ..., R_k$

Complexity $\sim O(n^k)$
- Polynomial data complexity (n)
- Exponential query complexity (k)

Can we do better in terms of query complexity?
Complexity of evaluating CQ

• Evaluation of CQ is NP-hard in k [Chandra-Merlin’77]
• e.g. reduction from k-clique in $G(V, E)$
 – Find if there is a group of k vertices U such that for all
 $u, v \in U$, the edge $(u, v) \subseteq E$

• $Q() :\land_{1<i<j<k} E(x_i, x_j)$

Can we do better for some queries?
How about the following path query?

- Check if there is a path of length k-1

\[P^k() : R_1(x_1, x_2), R_2(x_2, x_3), \ldots, R_k(x_{k-1}, x_k) \]
Note: the join size can be exponential

• Check if there is a path of length k-1

• $P^k() : R_1(x_1, x_2), R_2(x_2, x_3), \ldots, R_k(x_{k-1}, x_k)$

<table>
<thead>
<tr>
<th>A_i</th>
<th>A_{i+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
</tr>
</tbody>
</table>
How about the following path query?

- Check if there is a path of length $k-1$

- $P^k() : R_1(x_1, x_2), R_2(x_2, x_3), \ldots, R_k(x_{k-1}, x_k)$

Give a poly-time (in k) algorithm for this query
Semi-join Operator:

- Recall semi-join from distributed databases (Lecture-17)
 - Project R to join columns and send to the site with S
 - Compute “reduction of S” by joining with the join columns
 - Send back to the site with R and compute final join

- Instances
 - I of R, and
 - J of S

- \(I \Join J = \pi_R (I \Join J) \)

- \(I \Join J = (I \Join J) \Join J = (J \Join I) \Join I \)
Poly-time algorithm for path query

- \(P^k() : R_1(x_1, x_2), R_2(x_2, x_3), \ldots, R_k(x_{k-1}, x_k) \)

- \(R1'' = \text{Project } R1 \text{ on } x2 \)
- \(R2' = \text{Semi-join } R2 \text{ with } R1'' \)
- \(R2'' = \text{Project } R2' \text{ on } x3 \)
- \(R3' = \text{Semi-join } R3 \text{ with } R1'' \)
- \(R3'' = \text{Project } R3' \text{ on } x4 \)
-

Complexity:
- suppose \(|R_i| = n \)
- All intermediate relation size is at most \(n \)
- Semi-join = \(O(n \log n) \)
- Running time = \(O(kn \log n) \)
Acyclic query processing in poly-time generalizes this concept
Next (from Jeff Ullman’s talk)

- Query hypergraph
- GYO reduction
- Acyclicity
- Four equivalent properties of acyclic queries
 1. GYO reduction is empty
 2. “Locally consistent” = “Globally consistent”
 3. A “full reducer” using semi-join exists
 4. Query has a “join tree”

Ron Fagin Jeff Ullman Phil Bernstein Georg Gottlob
Ron Fagin and Acyclic Hypergraphs

Why Hypergraphs?
Interesting Properties
Fagin’s Hierarchy

Jeffrey D. Ullman
Stanford University
Hypergraphs

- Nodes + \textit{(hyper)edges} that are sets of any number of nodes.

\begin{center}
\begin{tikzpicture}
 \node[draw,shape=circle] (A) at (0,0) {A};
 \node[draw,shape=circle] (B) at (1,1) {B};
 \node[draw,shape=circle] (C) at (0,1) {C};
 \node[draw,shape=circle] (D) at (1,0) {D};
 \node[draw,shape=circle] (E) at (2,1) {E};
 \node[draw,shape=circle] (F) at (2,0) {F};
 \draw (A) edge (B) edge (C) edge (D);
 \draw (B) edge (C) edge (D) edge (E);
 \draw (C) edge (D) edge (E) edge (F);
 \draw (D) edge (E) edge (F);
 \draw (E) edge (F);
\end{tikzpicture}
\end{center}
Hypergraphs as Schemas

- Nodes = attributes.
- Hyperedges = relation schemas.
- Hypergraph = database schema.
Hypergraphs as Schemas

- Nodes = attributes.
- Hyperedges = relation schemas.
- Hypergraph = database schema.

\[\{\text{ABC, BCD, BDE, DEF}\} \]
Hypergraphs as Natural Joins

- Nodes = attributes.
- Edges = schemas of relations being joined.
 - Any equijoin can be so represented if we rename equated attributes from different relations.
Hypergraphs as Natural Joins

- **Nodes** = attributes.
- **Edges** = schemas of relations being joined.
 - Any equijoin can be so represented if we rename equated attributes from different relations.

\[
\begin{align*}
\text{A} & \quad \text{B} \\
\text{C} & \quad \text{D} \\
\text{E} & \quad \text{F} \\
\end{align*}
\]

\[
= \text{ABC} \Join \text{BCD} \Join \text{BDE} \Join \text{DEF}
\]
Beeri, Fagin, Maier, Mendelzon, U, Yannakakis (STOC, 1981) looked at hypergraphs primarily as database schemas.
Beeri, Fagin, Maier, Mendelzon, U, Yannakakis (STOC, 1981) looked at hypergraphs primarily as database schemas.

At that time, the “universal-relation wars” were raging.

- Could you ask queries about attributes only and allow the system to figure out the proper join to connect these attributes?
Beeri, Fagin, Maier, Mendelzon, U, Yannakakis (STOC, 1981) looked at hypergraphs primarily as database schemas.

At that time, the “universal-relation wars” were raging.

- Could you ask queries about attributes only and allow the system to figure out the proper join to connect these attributes?

Identified a class of schemas ("acyclic") with certain properties that made sense as a universal relation.
It turns out there is a simple way to tell whether a hypergraph is acyclic, so we won’t bother with the original definition.

Due to Graham and Yu-Oszoyoglu independently.

“Reduce” the hypergraph using the following two rules:

- Eliminate a node in only one hyperedge.
- Eliminate a hyperedge contained in another.

If you get down to one empty edge, then the hypergraph is acyclic.
Example: GYO Reduction
Example: GYO Reduction

\[A \cap B \cap C \cap D \cap E \cap F \]
Example: GYO Reduction
Semijoin Reductions

Previously, Phil Bernstein and his students Chiu, Goodman, and Shmueli had looked at a seemingly unrelated question: when does a join have a full reducer?

- = finite sequence of semijoins that is guaranteed to eliminate from the relations all tuples that dangle in the complete join.
Local and Global Consistency

- **Schema** = $R_1, R_2, ..., R_k$
- **Instances** = $I_1, I_2, ..., I_k$

- **Locally consistent**
 - every tuple participates in pairwise joins
 - for all j, k
 - $\pi_{R_j} (I_j \bowtie I_k) = I_j$

- **Globally consistent**
 - every tuple participates in full join
 - for all j
 - $\pi_{R_j} (I_1 \bowtie I_2 \bowtie I_2 \bowtie ... \bowtie I_k) = I_j$
Local and Global Consistency

A related formulation: when does local consistency

- = the join of any two relations has no dangling tuples

imply global consistency

- = there are no dangling tuples in any relation when the join of all the relations is taken.

It turns out “exists a full reducer” = “local consistency implies global consistency” = “acyclic.”
These three relations are locally consistent. But the join of all three relations is empty. Hence not globally consistent.
Now, semijoin reduction will make each relation empty. But the number of steps needed depends on the number of tuples.

1. AB \bowtie CA eliminates only (0,1).
2. Then BC \bowtie AB eliminates only (1,2).
3. And so on...
A join of two relations is *monotone* if it has no dangling tuples.
A join of two relations is monotone if it has no dangling tuples.

Important consequence: the output of a monotone join is at least as large each of its arguments.

- If implemented properly, the time taken by the join is proportional to input size + output size.
Monotone Joins

- A join of two relations is **monotone** if it has no dangling tuples.
- **Important consequence**: the output of a monotone join is at least as large each of its arguments.
 - If implemented properly, the time taken by the join is proportional to input size + output size.
- **Note**: “local consistency” = “joins of two database relations are monotone,” but “monotone” applies to intermediate joins also.
This line of research had a very different view of the condition under which full reducers exist (and under which local consistency = global consistency).
This line of research had a very different view of the condition under which full reducers exist (and under which local consistency = global consistency).

If and only if you can build a tree with:
This line of research had a very different view of the condition under which full reducers exist (and under which local consistency = global consistency).

If and only if you can build a tree with:
- Nodes = relation schemas.
This line of research had a very different view of the condition under which full reducers exist (and under which local consistency = global consistency).

If and only if you can build a tree with:

- Nodes = relation schemas.
- For every attribute, the set of nodes containing that attribute is connected.
Example: Tree View of Acyclicity
Example: Tree View of Acyclicity
Example: Tree View of Acyclicity
Example: A Cyclic Join

By symmetry, all trees look like this. Notice A is at disconnected nodes.
Theorem

From Beeri, Fagin, Maier, and Yannakakis (J. ACM, 1983).
Theorem

- From Beeri, Fagin, Maier, and Yannakakis (J. ACM, 1983).
- A hypergraph is acyclic if and only if its hyperedges form a tree whose nodes containing any given attribute are connected.
Theorem

- From Beeri, Fagin, Maier, and Yannakakis (J. ACM, 1983).
- A hypergraph is acyclic if and only if its hyperedges form a tree whose nodes containing any given attribute are connected.
- Therefore, acyclic hypergraphs, and only acyclic hypergraphs, have:
 1. Full reducers.
 2. Local consistency = global consistency.
 3. Local consistency => monotone join sequences guaranteed to exist.
How does query acyclicity help obtain an efficient join algorithm?
Example from Georg Gottlob’s talk
How are ACQs evaluated according to Yannakakis‘Algorithm?
O(|Q| \times |r_{\text{max}}| \times \log |r_{\text{max}}|)
\[d(Y,P)\]

\[r(Y,Z,U)\]

\[s(Z,U,W)\]

\[t(V,Z)\]

\[O(|Q| \times |r_{\text{max}}| \times \log |r_{\text{max}}|)\]
A solution: Y=3, P=7, Z=8, U=9, W=4, V=9
To obtain fully reduced relations, perform semijoins downwards.

\[O(|Q| \times |r_{\text{max}}| \times \log |r_{\text{max}}|) \]
Yannakakis’[84] Algorithm for Acyclic Boolean CQ

1. **Compute a join-tree from GYO decomposition**
 - Need the ”formal definition” of GYO reduction
 - an edge f can be removed if there exists another edge f' as “witness” such that no vertex of $f-f'$ is in any other edge
 - $== f$ can be partitioned into vertices in no other edges + vertices contained in f'
 - f' becomes the parent of f in the join-tree

2. **Compute semi-join at each parent node bottom-up for each edge to a child**

3. **Query is true if and only if the root relation is non-empty**
Full Reducer from Yannakakis’s algorithm

• To obtain fully reduced relations:
 – After reaching the root, perform semi-joins downwards

• Algorithm to obtain full reducers using the join-tree:
 – if (f, f’) is an edge in the tree where f is the child
 • Add f’ = f’ ⋊ f
 • Recursively obtain reducer for the tree removing f
 (here we have a globally-consistent state)
 • Add f := f ⋊ f’
 – This is done for distributed semi-join!
Full Reducer for Path Query

- $P^k() \ :- \ R_1(x_1, x_2), \ R_2(x_2, x_3), \ \ldots, \ R_k(x_{k-1}, x_k)$

- $R_2 : = R_2 \times R_1$
- $R_3 : = R_3 \times R_2$
- \ldots
- $R_k : = R_k \times R_{k-1}$

Enough for query evaluation

- $R_{k-1} : = R_{k-1} \times R_k$
- \ldots
- $R_2 : = R_2 \times R_3$
- $R_1 : = R_1 \times R_2$
Extension of Yannakakis’ algorithm for non-Boolean CQs

• Polynomial in input size + output size
1. Use a full reducer (like before)
2. Join in any order
3. In the join phase, project out all unnecessary attributes
 – while joining \(P \bowtie C \): P parent and C child
 – project out all attributes in C that are not in the final projection

• No globally dangling tuples, so join can only increase in size at each step, each intermediate result is polynomial in the output size
• Unlike cyclic join (add a cycle in our first example)
Other Notions of Acyclicity by Fagin’83

• Notion of CQ acyclicity through GYO reduction = α-acyclic

• Other notions in Fagin’83: γ-acyclicity and β-acyclicity
 – Also Berge-acyclicity (standard notion of acyclicity in graphs generalized to hypergraphs)
 – these are not covered in class
References

• Ron Fagin event talk in PODS’16 by Jeff Ullman

• Jeff Ullman’s course notes:
 http://infolab.stanford.edu/~ullman/cs345-notes.html

• Gems of PODS’16 talk by Georg Gottlob
 – Gottlob et al. generalized the notion of acyclicity to “generalized hyper-tree width”
 – Talks about incorporating hypertree in PostGres and challenges
 – Many other applications and generalization
 – Both slides and an article are available online

• Check out https://databasetheory.org
 – Links to both talks can be found here (and more!)

• Alice Book (Foundations of Databases – Abiteboul, Hull, Vianu) Chapter 6.4
Topic#2:
Worse-case join algorithms

See slides by Ashwin Machanavajjhala on the course website

(full slide deck can be found from this link:

which includes lower bound results – not covered in this class)