CompSci 516
Data Intensive Computing Systems

Lecture 19
Data Warehousing
and
Data Cube

Instructor: Sudeepa Roy
Reading Material

- [RG]
 - Chapter 25

- Harinarayan-Rajaraman-Ullman, SIGMOD 1996 “Implementing data cubes efficiently”
Data Warehousing
Introduction

• Organizations analyze current and historical data
 – to identify useful patterns
 – to support business strategies

• Emphasis is on complex, interactive, exploratory analysis of very large datasets

• Created by integrating data from across all parts of an enterprise

• Data is fairly static

• Relevant once again for the recent “Big Data analysis”
 – to figure out what we can reuse, what we cannot
Three Complementary Trends

• **Data Warehousing (DW):**
 – Consolidate data from many sources in one large repository
 – Loading, periodic synchronization of replicas
 – Semantic integration

• **OLAP:**
 – Complex SQL queries and views.
 – Queries based on spreadsheet-style operations and “multidimensional” view of data.
 – Interactive and “online” queries.

• **Data Mining:**
 – Exploratory search for interesting trends and anomalies
 – Next lecture!
Data Warehousing

• A collection of decision support technologies
• To enable people in industry/organizations to make better decisions
 – Supports OLAP (On-Line Analytical Processing)
• Applications in
 – Manufacturing
 – Retail
 – Finance
 – Transportation
 – Healthcare
 – …
• Typically maintained separately from “Operational Databases”
 – Operational Databases support OLTP (On-Line Transaction Processing)
<table>
<thead>
<tr>
<th>OLTP</th>
<th>Data Warehousing/OLAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications:</td>
<td>Applications:</td>
</tr>
<tr>
<td>Order entry, sales update, banking transactions</td>
<td>Decision support in industry/organization</td>
</tr>
<tr>
<td>Detailed, up-to-date data</td>
<td>Summarized, historical data (from multiple operational db, grows over time)</td>
</tr>
<tr>
<td>Structured, repetitive, short tasks</td>
<td>Query intensive, ad hoc, complex queries</td>
</tr>
<tr>
<td>Each transaction reads/updates only a few tuples (tens of)</td>
<td>Each query can accesses many records, and perform many joins, scans, aggregates</td>
</tr>
<tr>
<td>Important:</td>
<td>Important:</td>
</tr>
<tr>
<td>Consistency, recoverability, Maximizing transaction throughput</td>
<td>Query throughput</td>
</tr>
<tr>
<td></td>
<td>Response times</td>
</tr>
</tbody>
</table>
Data Marts

• **Data marts**
 – subsets of data on selected subjects
 – e.g. Marketing data mart can include customer, product, sales
 – Department-focused, no enterprise-wide consensus needed
 – But may lead to complex integration problems in the long run
ROLAP and MOLAP

• **Relational OLAP (ROLAP)**
 – On top of standard relational DBMS
 – Data is stored in relational DBMS
 – Supports extensions to SQL to access multi-dimensional data

• **Multidimensional OLAP (MOLAP)**
 – Directly stores multidimensional data in special data structures (e.g. arrays)
Data Warehousing to Mining

- Integrated data spanning long time periods, often augmented with summary information
- Several gigabytes to terabytes common
- Interactive response times expected for complex queries; ad-hoc updates uncommon
Warehousing Issues

• **Semantic Integration:** When getting data from multiple sources, must eliminate mismatches
 – e.g., different currencies, schemas

• **Heterogeneous Sources:** Must access data from a variety of source formats and repositories
 – Replication capabilities can be exploited here

• **Load, Refresh, Purge:** Must load data, periodically refresh it, and purge too-old data

• **Metadata Management:** Must keep track of source, loading time, and other information for all data in the warehouse
DW Architecture

• Extract data from multiple operational DB and external sources
• Clean/integrate/transform/store
• refresh periodically
 – update base and derived data
 – admin decides when and how
• Main DW and several data marts (possibly)
• Managed by one or more servers and front end tools
• Additional meta data and monitoring/admin tools

Figure 1. Data Warehousing Architecture
ROLAP: Star Schema

- To reflect multi-dimensional views of data
- Single fact table
- Single table for every dimension
- Each tuple in the fact table consists of
 - pointers (foreign key) to each of the dimensions (multi-dimensional coordinates)
 - numeric value for those coordinates

Each dimension table contains attributes of that dimension

No support for attribute hierarchies
Dimension Hierarchies

• For each dimension, the set of values can be organized in a hierarchy:
ROLAP: Snowflake Schema

- Refines star-schema
- Dimensional hierarchy is explicitly represented

(+): Dimension tables easier to maintain
 - Suppose the “category description” is being changed

(-): Need additional joins

Fact Constellations
 - Multiple fact tables share some dimensional tables
 - E.g. Projected and Actual Expenses may share many dimensions
OLAP Queries

- Influenced by SQL and by spreadsheets.
- A common operation is to aggregate a measure over one or more dimensions.
 - Find total sales.
 - Find total sales for each city, or for each state.
 - Find top five products ranked by total sales.
- Roll-up: Aggregating at different levels of a dimension hierarchy.
 - E.g., Given total sales by city, we can roll-up to get sales by state.
OLAP
and
Data Cube
Motivation: OLAP Queries

• Data analysts are interested in exploring trends and anomalies
 – Possibly by visualization (Excel) - 2D or 3D plots
 – “Dimensionality Reduction” by summarizing data and computing aggregates
 – Influenced by SQL and by spreadsheets.
 – A common operation is to aggregate a measure over one or more dimensions.

• Find total unit sales for each
 1. Model
 2. Model, broken into years
 3. Year, broken into colors
 4. Year
 5. Model, broken into color,
Naïve Approach

Run a number of queries

\[
\text{SELECT sum(units)} \\
\text{FROM Sales}
\]

\[
\text{SELECT Color, sum(units)} \\
\text{FROM Sales} \\
\text{GROUP BY Color}
\]

\[
\text{SELECT Year, sum(units)} \\
\text{FROM Sales} \\
\text{GROUP BY Year}
\]

\[
\text{SELECT Model, Year, sum(units)} \\
\text{FROM Sales} \\
\text{GROUP BY Model, Year}
\]

...

- Data cube generalizes Histogram, Roll-Ups, Cross-Tabs
- More complex to do these with GROUP-BY

- How many sub-queries?
- How many sub-queries for 8 attributes?
Histograms

A tabulated frequency of computed values

SELECT Year, COUNT(Units) as total
FROM Sales
GROUP BY Year
ORDER BY Year

May require a nested SELECT to compute
Roll-Ups

- Analysis reports start at a coarse level, go to finer levels
- Order of attribute matters
- Not relational data (empty cells no keys)

<table>
<thead>
<tr>
<th>Model</th>
<th>Year</th>
<th>Color</th>
<th>Model, Year, Color</th>
<th>Model, Year</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>Black</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>White</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>Black</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>White</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
Roll-Ups

- Another representation (Chris Date’96)
- Relational, but
 - long attribute names
 - hard to express in SQL and repetition

GROUP BY

<table>
<thead>
<tr>
<th>Model</th>
<th>Year</th>
<th>Color</th>
<th>Model, Year, Color</th>
<th>Model, Year</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>Black</td>
<td>50</td>
<td>90</td>
<td>290</td>
</tr>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>White</td>
<td>40</td>
<td>90</td>
<td>290</td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>Black</td>
<td>85</td>
<td>200</td>
<td>290</td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>Black</td>
<td>115</td>
<td>200</td>
<td>290</td>
</tr>
</tbody>
</table>
‘ALL’ Construct

Easier to visualize roll-up if allow ALL to fill in the super-aggregates

```sql
SELECT Model, Year, Color, SUM(Units)
FROM Sales
WHERE Model = ‘Chevy’
GROUP BY Model, Year, Color
UNION
SELECT Model, Year, ‘ALL’, SUM(Units)
FROM Sales
WHERE Model = ‘Chevy’
GROUP BY Model, Year
UNION
...
UNION
SELECT ‘ALL’, ‘ALL’, ‘ALL’, SUM(Units)
FROM Sales
WHERE Model = ‘Chevy’;
```

<table>
<thead>
<tr>
<th>Model</th>
<th>Year</th>
<th>Color</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>Black</td>
<td>50</td>
</tr>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>White</td>
<td>40</td>
</tr>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>‘ALL’</td>
<td>90</td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>Black</td>
<td>85</td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>White</td>
<td>115</td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>‘ALL’</td>
<td>200</td>
</tr>
<tr>
<td>Chevy</td>
<td>‘ALL’</td>
<td>‘ALL’</td>
<td>290</td>
</tr>
</tbody>
</table>
Traditional Roll-Up

<table>
<thead>
<tr>
<th>Model</th>
<th>Year</th>
<th>Color</th>
<th>Model, Year, Color</th>
<th>Model, Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>Black</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>White</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>Black</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>White</td>
<td>85</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

‘ALL’ Roll-Up

<table>
<thead>
<tr>
<th>Model</th>
<th>Year</th>
<th>Color</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>Black</td>
<td>50</td>
</tr>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>White</td>
<td>40</td>
</tr>
<tr>
<td>Chevy</td>
<td>1994</td>
<td>‘ALL’</td>
<td>90</td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>Black</td>
<td>85</td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>White</td>
<td>115</td>
</tr>
<tr>
<td>Chevy</td>
<td>1995</td>
<td>‘ALL’</td>
<td>200</td>
</tr>
<tr>
<td>Chevy</td>
<td>‘ALL’</td>
<td>‘ALL’</td>
<td>290</td>
</tr>
</tbody>
</table>

- Roll-ups are asymmetric
Cross Tabulation

If we made the roll-up symmetric, we would get a cross-tabulation
Generalizes to higher dimensions

SELECT Model, ‘ALL’, Color, SUM(Units)
FROM Sales
WHERE Model = ‘Chevy’
GROUP BY Model, Color

<table>
<thead>
<tr>
<th></th>
<th>1994</th>
<th>1995</th>
<th>Total (ALL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>50</td>
<td>85</td>
<td>135</td>
</tr>
<tr>
<td>White</td>
<td>40</td>
<td>115</td>
<td>155</td>
</tr>
<tr>
<td>Total (ALL)</td>
<td>90</td>
<td>200</td>
<td>290</td>
</tr>
</tbody>
</table>

Is the problem solved with Cross-Tab and GROUP-BYs with ‘ALL’?

- Requires a lot of GROUP BYs (64 for 6-dimension)
- Too complex to optimize (64 scans, 64 sort/hash, slow)
SELECT 'ALL', 'ALL', 'ALL', sum(units)
FROM Sales
UNION
SELECT 'ALL', 'ALL', Color, sum(units)
FROM Sales
GROUP BY Color
UNION
SELECT 'ALL', Year, 'ALL', sum(units)
FROM Sales
GROUP BY Year
UNION
SELECT Model, Year, 'ALL', sum(units)
FROM Sales
GROUP BY Model, Year
UNION
....
Data Cube

Product Mgr. View

Market

SALES

Time

Regional Mgr. View

Financial Mgr. View

Ad Hoc View

Ack: from slides by Laurel Orr and Jeremy Hyrkas, UW
Data Cube

• Computes the aggregate on all possible combinations of group by columns.

• If there are N attributes, there are $2^N - 1$ super-aggregates.

• If the cardinality of the N attributes are $C_1, ..., C_N$, then there are a total of $(C_1+1)...(C_N+1)$ values in the cube.

• ROLL-UP is similar but just looks at N aggregates
Data Cube Syntax

- SQL Server

```sql
SELECT Model, Year, Color, sum(units)
FROM Sales
GROUP BY Model, Year, Color
WITH CUBE
```
Types of Aggregates

• **Distributive**: input can be partitioned into disjoint sets and aggregated separately
 - COUNT, SUM, MIN

• **Algebraic**: can be composed of distributive aggregates
 - AVG

• **Holistic**: aggregate must be computed over the entire input set
 - MEDIAN

• Efficient computation of the CUBE operator depends on the type of aggregate
 - Distributive and Algebraic aggregates motivate optimizations
“Lattice” Framework for Data Cube: 1/3

- Can model group-by queries well
 - Users typically go along the edges
 - Drill-down (going up) and Roll-up (going down) along a path
“Lattice” Framework for Data Cube : 2/3

- The order of “materializing views”:
 - Suppose a set S of views has to be materialized
 - We do not need to go to raw data to materialize every view
 - “Topological order” sort in S (first all ancestors are materialized, then a node is materialized)
 - Then, materialize from the smallest ancestor
 - e.g. materializing s from ps needs to read 0.8 M, but from sc needs to read 6M tuples

Duke CS, Fall 2016
CompSci 516: Data Intensive Computing Systems
“Lattice” Framework for Data Cube: 3/3

• However, further consideration:
 – sorted order of ancestors
 – pipeline or not – see the pipesort algo

• More on View selection at the end
Hierarchies

- Some dimensions (attributes) are organized in hierarchies
- Should be considered while deciding materialization of views

Hierarchy of time attributes

- Day
- Month
- Year
- Week
- None

Functional dependencies:
- Month -> Year
- (Jan’15) -> 2015

Roll-up
Drill-down
Combining Two Hierarchical Dimensions

part (p):
 size(z), type(t)

\[\text{p} \]

\[\text{z} \]

\[\text{t} \]

none

customer (c):
 nation(n)

\[\text{c} \]

\[\text{n} \]

none

- lattice structure between part (p) and customer (c) without hierarchy
- How can we extend the lattice structure to include the hierarchy for parts + hierarchy for customers?
- Solution: use product lattice
Combining Two Hierarchical Dimensions

Direct Product Lattice

- Select one lattice, say for `p`
- Combine it with each value in the hierarchy of `c`

Part (`p`):
- size (`z`) and type (`t`)

Customer (`c`):
- nation (`n`)

Duke CS, Fall 2016

CompSci 516: Data Intensive Computing Systems
Combining Two Hierarchical Dimensions

part (p):
 size(z), type(t)

Then add edges from the hierarchy of c:
 • With the same value of p, z, t

customer (c):
 nation(n)

Duke CS, Fall 2016
CompSci 516: Data Intensive Computing Systems
Combining Two Hierarchical Dimensions

part:
size(z), type(t)

none

Complete Direct Product Lattice

customer:
nation(n)

c

n

none
View Materialization and Maintenance

[RG] Chapters 25.8-25.10
(slides adapted from the instructor material by the authors)
Views

• Motivation (example)
 – Different groups of analysts within an organization are typically concerned with different aspects of a business
 – It is convenient to define “views” that give each group insight into the relevant business details
 – Other views can be defined or queries can be written using these views
 – Convenient and Efficient
CREATE VIEW RegionalSales(category, sales, state) AS
SELECT P.category, S.sales, L.state
FROM Products P, Sales S, Locations L
WHERE P.pid=S.pid AND S.locid=L.locid

SELECT R.category, R.state, SUM(R.sales)
FROM RegionalSales AS R
GROUP BY R.category, R.state

SELECT R.category, R.state, SUM(R.sales)
FROM (SELECT P.category, S.sales, L.state
 FROM Products P, Sales S, Locations L
 WHERE P.pid=S.pid AND S.locid=L.locid) AS R
GROUP BY R.category, R.state

View
(sales of products by category and state)

Query
(total sales for each category by state)

Query Modification
(SQL does not specify how to evaluate queries on views, but can consider it as a replacement)
Views and OLAP/Warehousing

• OLAP queries are typically aggregate queries
 – Precomputation is essential for interactive response times
 – The CUBE is in fact a collection of aggregate queries, and precomputation is especially important
 – lots of work on what is best to precompute given a limited amount of space to store precomputed results.

• Warehouses can be thought of as a collection of asynchronously replicated tables and periodically maintained views
 – Factors: size, number of tables involved, many are from external independent databases
 – Has renewed interest in (asynchronous) view maintenance (more later)
View Materialization

• Query Modification may not be efficient
 – when the underlying view is complex
 – even with sophisticated optimization and evaluation
 – esp. when the underlying tables are in a remote database (connectivity and availability)

• Alternative: View Materialization
 – Precompute the view definition and store the result
 – Materialized views can be used as regular relations
 – Provides fast access, like a (very high-level) cache
 – Can create index on views too for further speedup
 – Drawback: to maintain the consistency of the materialized view when the underlying table(s) are updated (View Maintenance)
 – Ideally, we want Incremental View Maintenance algorithms (later)
Index on Materialized Views: Examples

CREATE VIEW RegionalSales (category, sales, state)
AS SELECT P.category, S.sales, L.state
FROM Products P, Sales S, Locations L
WHERE P.pid=S.pid AND S.locid=L.locid

SELECT R.category, R.state, SUM(R.sales)
FROM RegionalSales AS R
GROUP BY R.category, R.state

• Suppose we precompute RegionalSales and store it with a clustered B+ tree index on [category, state, sales].
 – Then, the query can be answered by an index-only scan.

SELECT R.state, SUM(R.sales)
FROM RegionalSales R
WHERE R.category="Laptop"
GROUP BY R.state

SELECT R.state, SUM(R.sales)
FROM RegionalSales R
WHERE R.state="Wisconsin"
GROUP BY R.category

Index on precomputed view is great!

Index is less useful (must scan entire leaf level)
(Research) Issues in View Materialization

1. What views should we materialize, and what indexes should we build on the precomputed results?

2. Given a query and a set of materialized views, can we use the materialized views to answer the query?
 – related to the first question (workload dependent)
 – Try to materialize a small, carefully chosen set of views that can be utilized to quickly answer most of the important queries

3. How frequently should we refresh materialized views to make them consistent with the underlying tables?
 – And how can we do this incrementally?
View Maintenance

- **Two steps:**
 - **Propagate:** Compute changes to view when data changes
 - **Refresh:** Apply changes to the materialized view table

- **Maintenance policy:** Controls when we do refresh
 - **Immediate:** As part of the transaction that modifies the underlying data tables
 - + Materialized view is always consistent
 - - updates are slowed
 - **Deferred:** Some time later, in a separate transaction
 - - View becomes inconsistent
 - + can scale to maintain many views without slowing updates
Types of Deferred Maintenance

Three flavors:

• **Lazy:**
 – Delay refresh until next query on view; then refresh before answering the query (slows down queries than updates)

• **Periodic (Snapshot):**
 – Refresh periodically (e.g. once in a day). Queries possibly answered using outdated version of view tuples. Widely used, especially for asynchronous replication in distributed databases, and for warehouse applications

• **Event-based or Forced:**
 – E.g., Refresh after a fixed number of updates to underlying data tables

• **e.g. Snapshot in Oracle 7**
 – periodically refreshed by entirely recomputing the view
 – Incremental ”fast refresh” or “simple snapshots” for simpler views (no aggregate, group by, join, distinct etc.)
Implementing Data Cube
Basic Ideas

• Compute GROUP-BYs from previously computed GROUP-BYs
 – e.g. ABCD to (ABC or ACD) to (AB or AC) ...

• Which order ABCD is sorted, matters for subsequent computations
 – if (ABCD) is the sorted order, ABC is cheap, ACD or BCD is expensive

• Next, some generic optimizations
Optimization 1: Smallest Parent

- Compute GROUP-BY from the smallest (size) previously computed GROUP-BY as a parent
 - AB can be computed from ABC, ABD, or ABCD
 - ABC or ABD better than ABCD
 - Even ABC or ABD may have different sizes, try to choose the smaller parent
Optimization 2: Cache Results

• Cache result of one GROUP-BY in memory to reduce disk I/O
 – Compute AB from ABC while ABC is still in memory
Optimization 3: Amortize Disk Scans

• Amortize disk reads for multiple GROUP-BYs
 – Suppose the result for ABCD is stored on disk
 – Compute all of ABC, ABD, ACD, BCD simultaneously in one scan of ABCD
Optimization 4, 5 (next)

• 4. Share-sort
 – for sort-based algorithms
 – pipe-sort algorithm
 – covered in class

• 5. Shared-partition
 – for hash-based algorithms
 – pipe-hash algorithm
 – not covered - optional slides at the end
PipeSort: Idea

- Combine two optimizations: “shared-sorts” and “smallest-parent”
- Also include “cache-results” and “amortized-scans”
 - Compute one tuple of ABCD, propagate upward in the pipeline by a single scan

- Inside parenthesis (...): tuples sorted in this order
- No parenthesis: order can be arbitrary
PipeSort: Share-sort optimization

- Data sorted in one order
- Compute all GROUP-BYs prefixed in that order
- Example:
 - GROUP-BY over attributes ABCD
 - Sort raw data by (ABCD)
 - Compute (ABCD) -> (ABC) -> (AB) -> (A) in pipelined fashion
- No additional sort needed
- BUT, may have a conflict with “smallest-parent” optimization
 - ABD -> AB could be a better choice
 - Figure out the best parent choice by running a weighted-matching algorithm layer by layer
Search Lattice

- Directed edge \Rightarrow one attribute less and possible computation
- Level k contains k attributes
 - all = 0 attribute
- Two possible costs for each edge $e_{ij} = i \rightarrow j$
- $A(e_{ij})$: i is sorted for j
- $S(e_{ij})$: i is NOT sorted for j

No parenthesis: order of tuples can be arbitrary

Sorted

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>5</td>
</tr>
<tr>
<td>a1</td>
<td>b1</td>
<td>c2</td>
<td>10</td>
</tr>
<tr>
<td>a1</td>
<td>b2</td>
<td>c3</td>
<td>8</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c1</td>
<td>2</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c3</td>
<td>11</td>
</tr>
</tbody>
</table>

Not Sorted

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>a2</td>
<td>b2</td>
<td>c3</td>
<td>11</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c1</td>
<td>2</td>
</tr>
<tr>
<td>a1</td>
<td>b1</td>
<td>c2</td>
<td>10</td>
</tr>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>5</td>
</tr>
<tr>
<td>a1</td>
<td>b2</td>
<td>c1</td>
<td>2</td>
</tr>
</tbody>
</table>

Level 0

ABCD

Level 1

ABC

Level 2

AB

Level 3

AC

Level 4

AD

BC

BD

CD

A

B

C

sum

a1 b1 c1 5
a1 b1 c2 10
a1 b2 c3 8
a2 b2 c1 2
a2 b2 c3 11
a1 b1 c1 5
a1 b2 c3 8
a1 b1 c2 10
a2 b2 c1 2
a1 b1 c1 5
a1 b2 8
a2 b2 13
PipeSort Output

• A subgraph O
 – each node has a single parent
 – each node has a sorted order of attributes

• if parent’s sorted order is a prefix, cost = \(A(e_{ij})\), else \(S(e_{ij})\)
 – Mark by A or S
 – At most one A-out-edge
 – Note: for some nodes, there may be no green A-out-edge

• Goal: Find O with min total cost
Outline: PipeSort Algorithm (1)

- Go from level 0 to N-1
 - here N = 4
- For each level k, find the best way to construct it from level k+1
 - use “min-cost weighted bipartite matching” (known algo)
 - Bipartite graph
 - vertices U, V
 - edges E with cost
 - choose a set of edges with min cost from E such that each vertex is matched with at most one vertex

Here V is large enough so that every vertex in U has a match (a parent node)
Outline: PipeSort Algorithm (2)

- A weighted bipartite matching between level k and k+1
- Make k new copies of each node in level k+1
 - k+1 copies for each in total
 - replicate edges
- Original copy = cost $A(e_{ij}) = \text{sorted}$
 - sorted order of i fixed according to j
- New copies = cost $S(e_{ij}) = \text{not sorted}$
 - need to sort i for j
Outline: PipeSort Algorithm (3)

• Illustration with a smaller example

• Level \(k = 1 \) from level \(k+1 = 2 \)
 – one new copy (dotted edges)
 – one existing copy (solid edge)

• Assumption for simplicity
 – same cost for all outgoing edges

 \[A(e_{ij}) = A(e_{ij}') \]
 – \[S(e_{ij}) = S(e_{ij}') \]
Outline: PipeSort Algorithm (4)

After computing the plan, execute all pipelines

1. First pipeline is executed by one scan of the data
2. Sort (CBAD) -> (BADC), compute the second pipeline
3.
Outline: PipeSort Algorithm (5)

Observations:

• Finds the best plan for computing level k from level k+1
 – Assuming the cost of sorting “BAD” does not depend on how the GROUP-BY on “BAD” has been computed
 – Generating plan k+1 -> k does not prevent generating plan k+2 -> k+1 from finding the best choice

• However, a heuristic and not provably globally optimal solution

If the green edge is chosen, the sorted order of ABCD will be **BCAD**
(Optional – additional slides)

PipeHash Algorithm
PipeHash: Basic Idea (1)

- Use hash tables to compute smaller GROUP-BYs
- If the hash tables for AB and AC fit in memory, compute both in one scan of ABC
- With no memory restrictions

for $k = N...0$:

For each $k+1$-attribute GROUP BY g

- Compute in one scan of g all k-attribute GROUP BY where g is smallest parent
- Save g to disk and destroy the hash table of g
PipeHash: Basic Idea (2)

- But, data might be large, Hash Tables may not fit in memory
- Solution: optimization “shared-partition”
 - partition data on one or more attributes
 - Suppose the data is partitioned on attribute A
 - All GROUP-Bys containing A (AB, AC, AD, ABC...) can be computed independently on each partition
 - Cost of partitioning is shared by multiple GROUP-BYs

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>a1</td>
<td>b2</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>c1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>a1</td>
<td>c2</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>a2</td>
<td>c3</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>a2</td>
<td>c1</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>a1</td>
<td>b1</td>
<td>c2</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c3</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>a2</td>
<td>b2</td>
<td>c3</td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>
PipeHash: Basic Idea (3)

- Input: search lattice
- For each group-by, select smallest parent
- Result: Minimum Spanning Tree (MST)

Size of GROUP-BY

- But, all Hash Tables (HT) in the MST may not fit in the memory together
- To consider:
 - Which GROUP-BYs to compute together?
 - When to allocate-release memory for HT?
 - What attributes to partition on?
Outline: PipeHash Algorithm (1)

- Once again, a combinatorial optimization problem
- This problem is conjectured to be NP-complete in the paper
 - something to explore!
- Use heuristics

Trade-offs
1. Choose as large sub-tree of MST as possible ("cache-results", "amortized scan")
2. The sub-tree must include the partitioning attribute(s)

Heuristic

Choose a partitioning attribute that allows selection of the largest subtree of MST
Outline: PipeHash Algorithm (2)

Algorithm
- Input: search lattice
- worklist = {MST}
- while worklist not empty
 - select one tree \(T \) from the worklist
 - \(T' = \text{select-subtree}(T) \)
 - Compute-subtree(\(T' \))

Next, through examples
- \(\text{Select-subtree}(T) \)
 - May add more subtrees to worklist
- \(\text{Compute-subtree}(T') \)
Outline: PipeHash Algorithm (3)

- $T' = \text{Select-Subtree}(T) = T_A$
- $\text{Compute-Subtree}(T')$

Hash-Table in memory until all children are created

- $s = \{A\}$ is such that
 - T_s per partition in P_s fits in memory
 - $P_s = \#\text{partitions}$
 - $T' = T_s$ is the largest
- Creates new sub-trees to add

Optional material

Partition T_A
For each partition,

- Compute GROUP-BY ABCD
 - Scan ABCD to compute ABC, ABD, ACD
 - Save ABCD, ABD to disk
- Compute AD from ACD
 - Save ACD, AD to disk
- Compute AB, AC from ABC
 - Save ABC, AC to disk
- Compute A from AB
 - Save AB, A from disk
5 Experimental evaluation

In this section, we present the performance of our cube algorithms on several real-life datasets and analyze the behavior of these algorithms on tunable synthetic datasets. These experiments were performed on a RS/6000 250 workstation running AIX 3.2.5. The workstation had a total physical memory of 256 MB. We used a buffer of size 32 MB. The datasets were stored as flat files on a local 2GB SCSI 3.5” drive with sequential throughput of about 1.5 MB/second.

Figure 5: Performance of the cube computation algorithms on the five real life datasets. The y-axis denotes the total time normalized by the time taken by the NaiveHash algorithm for each dataset.

- Here sort-based better than hash-based (new hash-table for each GROUP-BY)
- Another experiment on synthetic data (see paper)
- For less sparse data, hash-based better than sort-based