Data-Intensive Computing Systems

Query Execution (Sort and Join operators)

Shivnath Babu
Roadmap

- A simple operator: Nested Loop Join
- Preliminaries
 - Cost model
 - Clustering
 - Operator classes
- Operator implementation (with examples from joins)
 - Scan-based
 - Sort-based
 - Using existing indexes
 - Hash-based
- Buffer Management
- Parallel Processing
Nested Loop Join (NLJ)

R1

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>10</td>
</tr>
<tr>
<td>a</td>
<td>20</td>
</tr>
<tr>
<td>b</td>
<td>10</td>
</tr>
<tr>
<td>d</td>
<td>30</td>
</tr>
</tbody>
</table>

R2

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>cat</td>
</tr>
<tr>
<td>40</td>
<td>dog</td>
</tr>
<tr>
<td>15</td>
<td>bat</td>
</tr>
<tr>
<td>20</td>
<td>rat</td>
</tr>
</tbody>
</table>

• NLJ (conceptually)
 for each \(r \in R1 \) do
 for each \(s \in R2 \) do
 if \(r.C = s.C \) then output \(r,s \) pair
Nested Loop Join (contd.)

- Tuple-based
- Block-based
- Asymmetric
Implementing Operators

- Basic algorithm
 - Scan-based (e.g., NLJ)
 - Sort-based
 - Using existing indexes
 - Hash-based (building an index on the fly)
- Memory management
 - Tradeoff between memory and #IOs
- Parallel processing
Roadmap

• A simple operator: Nested Loop Join
• Preliminaries
 – Cost model
 – Clustering
 – Operator classes
• Operator implementation (with examples from joins)
 – Scan-based
 – Sort-based
 – Using existing indexes
 – Hash-based
• Buffer Management
• Parallel Processing
Operator Cost Model

• **Simplest:** Count # of disk blocks read and written during operator execution
• Extends to query plans
 – Cost of query plan = Sum of operator costs
• Caution: Ignoring CPU costs
Assumptions

• Single-processor-single-disk machine
 – Will consider parallelism later

• Ignore cost of writing out result
 – Output size is independent of operator implementation

• Ignore # accesses to index blocks
Parameters used in Cost Model

\[B(R) = \# \text{ blocks storing } R \text{ tuples} \]
\[T(R) = \# \text{ tuples in } R \]
\[V(R,A) = \# \text{ distinct values of attr } A \text{ in } R \]
\[M = \# \text{ memory blocks available} \]
Roadmap

• A simple operator: Nested Loop Join
• Preliminaries
 – Cost model
 – Clustering
 – Operator classes
• Operator implementation (with examples from joins)
 – Scan-based
 – Sort-based
 – Using existing indexes
 – Hash-based
• Buffer Management
• Parallel Processing
Notions of clustering

- Clustered file organization

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>S1</th>
<th>S2</th>
<th>R3</th>
<th>R4</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R5</td>
<td>R5</td>
<td>R7</td>
<td>R8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Clustered relation

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R5</td>
<td>R5</td>
<td>R7</td>
<td>R8</td>
</tr>
</tbody>
</table>

- Clustering index
Clustering Index

Tuples with a given value of the search key packed in as few blocks as possible
Examples

T(R) = 10,000
B(R) = 200

If R is clustered, then \# R tuples per block = 10,000/200 = 50

Let V(R,A) = 40

⇒ If I is a clustering index on R.A, then \# IOs to access \(\sigma_{R.A} = "a"(R) \) = 250/50 = 5

⇒ If I is a non-clustering index on R.A, then \# IOs to access \(\sigma_{R.A} = "a"(R) \) = 250 (> B(R))
Operator Classes

<table>
<thead>
<tr>
<th></th>
<th>Tuple-at-a-time</th>
<th>Full-relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unary</td>
<td>Select</td>
<td>Sort</td>
</tr>
<tr>
<td>Binary</td>
<td></td>
<td>Difference</td>
</tr>
</tbody>
</table>
Roadmap

• A simple operator: Nested Loop Join
• Preliminaries
 – Cost model
 – Clustering
 – Operator classes
• Operator implementation (with examples from joins)
 – Scan-based
 – Sort-based
 – Using existing indexes
 – Hash-based
• Buffer Management
• Parallel Processing
Implementing Tuple-at-a-time Operators

• One pass algorithm:
 – Scan
 – Process tuples one by one
 – Write output

• Cost = $B(R)$
 – Remember: Cost = # IOs, and we ignore the cost to write output
Implementing a Full-Relation Operator, Ex: Sort

• Suppose $T(R) \times \text{tupleSize}(R) \leq M \times |B(R)|$
• Read R completely into memory
• Sort
• Write output
• Cost = $B(R)$
Implementing a Full-Relation Operator, Ex: Sort

• Suppose R won’t fit within M blocks
• Consider a two-pass algorithm for Sort; generalizes to a multi-pass algorithm
• Read R into memory in M-sized chunks
• Sort each chunk in memory and write out to disk as a sorted sublist
• Merge all sorted sublists
• Write output
Two-phase Sort: Phase 1

Suppose \(B(R) = 1000 \), \(R \) is clustered, and \(M = 100 \)

\[\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
\hline
999 \\
1000
\end{array} \]

\[\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
\hline
96 \\
97 \\
98 \\
99 \\
100
\end{array} \]

\[\begin{array}{c}
1 \\
101 \\
201 \\
\hline
801 \\
901 \\
901
\end{array} \]

Memory

Sorted Sublists
Two-phase Sort: Phase 2

Sorted Sublists

Memory

Sorted R

100
200
300
900
1000
1
101
201
801
901
1
2
3
4
5
6
7
8
9
10

1
2
3
4
5

999
1000
Analysis of Two-Phase Sort

• Cost = 3xB(R) if R is clustered,
 = B(R) + 2B(R’) otherwise

• Memory requirement M >= B(R)^{1/2}
Duplicate Elimination

- Suppose $B(R) \leq M$ and R is clustered
- Use an in-memory index structure
- Cost = $B(R)$
- Can we do with less memory?
 - $B(\delta(R)) \leq M$
 - Aggregation is similar to duplicate elimination
Duplicate Elimination Based on Sorting

• Sort, then eliminate duplicates
• Cost = Cost of sorting + B(R)
• Can we reduce cost?
 – Eliminate duplicates during the merge phase
Back to Nested Loop Join (NLJ)

- NLJ (conceptually)
 for each \(r \in R \) do
 for each \(s \in S \) do
 if \(r.C = s.C \) then output \(r,s \) pair

\[\begin{array}{|c|c|}
\hline
B & C \\
\hline
a & 10 \\
\hline
a & 20 \\
\hline
b & 10 \\
\hline
d & 30 \\
\hline
\end{array}\]

\[\begin{array}{|c|c|}
\hline
C & D \\
\hline
10 & cat \\
\hline
40 & dog \\
\hline
15 & bat \\
\hline
20 & rat \\
\hline
\end{array}\]
Analysis of Tuple-based NLJ

- Cost with R as outer = $T(R) + T(R) \times T(S)$
- Cost with S as outer = $T(S) + T(R) \times T(S)$
- $M \geq 2$
Block-based NLJ

• Suppose R is outer
 – Loop: Get the next M-1 R blocks into memory
 – Join these with each block of S

• $B(R) + \left(\frac{B(R)}{M-1}\right) \times B(S)$

• What if S is outer?
 – $B(S) + \left(\frac{B(S)}{M-1}\right) \times B(R)$
Let us work out an NLJ Example

• Relations are not clustered
• $T(R1) = 10,000$ $T(R2) = 5,000$
 10 tuples/block for R1; and for R2
 $M = 101$ blocks

Tuple-based NLJ Cost: for each R1 tuple:

$$[\text{Read tuple} + \text{Read R2}]$$

Total $= 10,000 \times [1 + 5000] = 50,010,000$ IOs
Can we do better when R, S are not clustered?

Use our memory

(1) Read 100 blocks worth of R1 tuples
(2) Read all of R2 (1 block at a time) + join
(3) Repeat until done
Cost: for each R1 chunk:

- Read chunk: 1000 IOs
- Read R2: 5000 IOs

Total/chunk = 6000

Total = \frac{10,000}{1,000} \times 6000 = 60,000 IOs

[Vs. 50,010,000!]
• Can we do better?

⇒ Reverse join order: R2 ⊙ R1

Total = \(\frac{5000}{1000} \times (1000 + 10,000) = 55,000 \) IOs

5 \times 11,000 = 55,000 IOs

[Vs. 60,000]
Example contd. NLJ R2 ⊙ R1

- Now suppose relations are clustered

Cost

For each R2 chunk:

- Read chunk: 100 IOs
- Read R1: 1000 IOs

Total/chunk = 1,100

Total = 5 chunks x 1,100 = 5,500 IOs

Vs. 55,000
Joins with Sorting

- **Sort-Merge Join** (conceptually)
 1. if R1 and R2 not sorted, sort them
 2. $i \leftarrow 1; j \leftarrow 1$

\[
\text{While } (i \leq T(R1)) \land (j \leq T(R2)) \text{ do }
\]

 - if $R1\{i\}.C = R2\{j\}.C$ then **OutputTuples**
 - else if $R1\{i\}.C > R2\{j\}.C$ then $j \leftarrow j+1$
 - else if $R1\{i\}.C < R2\{j\}.C$ then $i \leftarrow i+1$
Procedure **Output-Tuples**

While \((R1\{i\}.C = R2\{j\}.C) \land (i \leq T(R1))\) do

\[
jj \leftarrow j;
\]

while \((R1\{i\}.C = R2\{jj\}.C) \land (jj \leq T(R2))\) do

\[
\text{output pair } R1\{i\}, R2\{jj\};
\]

\[
\begin{align*}
jj & \leftarrow jj+1 \
\end{align*}
\]

\[
i \leftarrow i+1 \
\]
Example

<table>
<thead>
<tr>
<th>i</th>
<th>\text{R1}{i}.C</th>
<th>\text{R2}{j}.C</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>52</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>
Block-based Sort-Merge Join

• Block-based sort
• Block-based merge
Two-phase Sort: Phase 1

Suppose \(B(R) = 1000 \) and \(M = 100 \)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>Sorted Sublists</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sorted Sublists</th>
</tr>
</thead>
<tbody>
<tr>
<td>801</td>
</tr>
<tr>
<td>901</td>
</tr>
</tbody>
</table>

\(R \)
Two-phase Sort: Phase 2

Sorted Sublists:
- 100
- 200
- 300
- 900
- 1000

Memory:
- 100
- 200
- 300
- 900
- 1000

Sorted R:
- 1
- 2
- 3
- 4
- 5
- 999
- 1000
Sort-Merge Join

R1 → Sorted R1

R2 → Sorted R2

sorted sublists

Apply our merge algorithm
Analysis of Sort-Merge Join

- Cost = 5 x (B(R) + B(S))
- Memory requirement:
 \[M \geq (\max(B(R), B(S)))^{1/2} \]
Continuing with our Example

R1, R2 clustered, but unordered

Total cost = sort cost + join cost

\[= 6,000 + 1,500 = 7,500 \text{ IOs}\]

But: NLJ cost = 5,500

So merge join does not pay off!
However …

• NLJ cost = \(B(R) + \frac{B(R)B(S)}{M-1} = O(B(R)B(S))\) [Quadratic]

• Sort-merge join cost = \(5 \times (B(R) + B(S)) = O(B(R) + B(S))\) [Linear]
Can we Improve Sort-Merge Join?

Do we need to create the sorted R1, R2?
A more “Efficient” Sort-Merge Join
Analysis of the “Efficient” Sort-Merge Join

• Cost = 3 x (B(R) + B(S))
 [Vs. 5 x (B(R) + B(S))]

• Memory requirement:
 \[M \geq (B(R) + B(S))^{1/2} \]
 [Vs. \(M \geq (\max(B(R), B(S)))^{1/2} \)]

Another catch with the more “Efficient” version: Higher chances of thrashing!
Cost of “Efficient” Sort-Merge join:

Cost = Read R1 + Write R1 into sublists
+ Read R2 + Write R2 into sublists
+ Read R1 and R2 sublists for Join
= 2000 + 1000 + 1500 = 4500

[Vs. 7500]
Memory requirements in our Example

B(R1) = 1000 blocks, \(1000^{1/2} = 31.62\)

B(R2) = 500 blocks, \(500^{1/2} = 22.36\)

B(R1) + B(R2) = 1500, \(1500^{1/2} = 38.7\)

M > 32 buffers for simple sort-merge join

M > 39 buffers for efficient sort-merge join
Joins Using Existing Indexes

<table>
<thead>
<tr>
<th>R</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>cat</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>dog</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>bat</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>rat</td>
</tr>
</tbody>
</table>

- Indexed NLJ (conceptually)

 for each $r \in R$ do

 for each $s \in S$ that matches $\text{probe}(I, r.C)$ do

 output r, s pair
Continuing with our Running Example

• Assume R1.C index exists; 2 levels
• Assume R2 clustered, unordered

• Assume R1.C index fits in memory
Cost: R2 Reads: 500 IOs

for each R2 tuple:
- probe index - free
- if match, read R1 tuple

R1 Reads depends on:
- # matching tuples
- clustering index or not
What is expected \# of matching tuples?

(a) say R1.C is key, R2.C is foreign key
then expected = 1 tuple

(b) say V(R1,C) = 5000, T(R1) = 10,000
with uniform assumption
expect = 10,000/5,000 = 2
What is expected # of matching tuples?

(c) Say $\text{DOM}(R1, C) = 1,000,000$

$T(R1) = 10,000$

with assumption of uniform distribution in domain

Expected $= \frac{10,000}{1,000,000} = \frac{1}{100}$ tuples
Total cost with Index Join with a Non-Clustering Index

(a) Total cost = 500 + 5000(1) = 5,500

(b) Total cost = 500 + 5000(2) = 10,500

(c) Total cost = 500 + 5000\left(\frac{1}{100}\right) = 550

Will any of these change if we have a clustering index?
What if index does not fit in memory?
Example: say R1.C index is 201 blocks

- Keep root + 99 leaf nodes in memory
- Expected cost of each index access is

\[
E = \frac{(0)99}{200} + \frac{(1)101}{200} \approx 0.5
\]
Total cost (including Index Probes)

= 500+5000 [Probe + Get Records]
= 500+5000 [0.5+2]
= 500+12,500 = 13,000 (Case b)

For Case (c):
= 500+5000[0.5 × 1 + (1/100) × 1]
= 500+2500+50 = 3050 IOs
Block-Based NLJ Vs. Indexed NLJ

- Wrts #joining records
- Wrts index clustering

Plot graphs for Block NLJ and Indexed NLJ for clustering and non-clustering indexes
Sort-Merge Join with Indexes

- Can avoid sorting
- Zig-zag join
So far

not clustered

\[
\begin{align*}
\text{NLJ R2} & \bowtie \text{ R1} & 55,000 \text{ (best)} \\
\text{Merge Join} & \quad & \\
\text{Sort+Merge Join} & \quad & \\
\text{R1.C Index} & \quad & \\
\text{R2.C Index} & \quad & \\
\end{align*}
\]

clustered

\[
\begin{align*}
\text{NLJ R2} & \bowtie \text{ R1} & 5500 \\
\text{Merge join} & 1500 \\
\text{Sort+Merge Join} & 7500 \rightarrow 4500 \\
\text{R1.C Index} & 5500, 3050, 550 \\
\text{R2.C Index} & \\
\end{align*}
\]
Building Indexes on the fly for Joins

• Hash join (conceptual)
 – Hash function h, range $1 \rightarrow k$
 – Buckets for R1: $G_1, G_2, \ldots G_k$
 – Buckets for R2: $H_1, H_2, \ldots H_k$

Algorithm
(1) Hash R1 tuples into G_1--G_k
(2) Hash R2 tuples into H_1--H_k
(3) For $i = 1$ to k do
 Match tuples in G_i, H_i buckets
Example Continued: Hash Join

- R1, R2 contiguous
 - Use 100 buckets
 - Read R1, hash, + write buckets

![Diagram showing hash join process]
-> Same for R2
-> Read one R1 bucket; build memory hash table
 [R1 is called the **build** relation of the hash join]
-> Read corresponding R2 bucket + hash probe
 [R2 is called the **probe** relation of the hash join]

Then repeat for all buckets
Cost:

“Bucketize:” Read R1 + write

Read R2 + write

Join: Read R1, R2

Total cost = 3 x [1000+500] = 4500
Minimum Memory Requirements

Size of R1 bucket = \(\frac{x}{k} \)

\(k = \) number of buckets \((k = M-1) \)
\(x = \) number of R1 blocks

So... \(\frac{x}{k} \leq k \iff k \geq \sqrt{x} \iff M > \sqrt{x} \)

Actually, \(M > \sqrt{\min(B(R), B(S))} \)
[Vs. \(M > \sqrt{B(R) + B(S)} \) for Sort-Merge Join]
Trick: keep some buckets in memory

E.g., \(k' = 33 \) \(R_1 \) buckets = 31 blocks
keep 2 in memory

Memory use:
- \(G_1 \) 31 buffers
- \(G_2 \) 31 buffers
- Output 33-2 buffers
- \(R_1 \) input 1
Total 94 buffers
6 buffers to spare!!
called **Hybrid Hash-Join**
Next: Bucketize R2

- R2 buckets = $\frac{500}{33} = 16$ blocks
- Two of the R2 buckets joined immediately with G1, G2

```
memory

R2

G1
G2

R2 buckets

16

33-2=31

R1 buckets

33-2=31
```
Finally: Join remaining buckets

– for each bucket pair:
 • read one of the buckets into memory
 • join with second bucket

\[
\begin{align*}
\text{Gi} & \quad \text{one full R2 bucket} \\
\text{R2 buckets} & \quad \text{16} \\
\text{R1 buckets} & \quad \text{31}
\end{align*}
\]

\[
\begin{align*}
33 - 2 &= 31 \\
33 - 2 &= 31
\end{align*}
\]
Cost

- Bucketize R1 = 1000 + 31 \times 31 = 1961
- To bucketize R2, only write 31 buckets:
 so, cost = 500 + 31 \times 16 = 996
- To compare join (2 buckets already done)
 read 31 \times 31 + 31 \times 16 = 1457

Total cost = 1961 + 996 + 1457 = 4414
How many Buckets in Memory?

OR ...?

☞ See Garcia-Molina, Ullman, Widom book for an interesting answer ...
Another hash join trick:

- Only write into buckets \(<\text{val,ptr}>\) pairs
- When we get a match in join phase, must fetch tuples
• To illustrate cost computation, assume:
 – 100 <val,ptr> pairs/block
 – expected number of result tuples is 100

• Build hash table for R2 in memory
 5000 tuples \rightarrow 5000/100 = 50 blocks

• Read R1 and match

• Read ~ 100 R2 tuples

\[
\text{Total cost} = \begin{align*}
\text{Read R2:} & \quad 500 \\
\text{Read R1:} & \quad 1000 \\
\text{Get tuples:} & \quad 100 \\
& \quad \frac{1600}{1600}
\end{align*}
\]
So far:

- NLJ 5500
- Merge join 1500
- Sort+merge joint 7500
- R1.C index 5500 \(\rightarrow\) 550
- R2.C index
- Build R.C index
- Build S.C index
- Hash join 4500
 - with trick, R1 first 4414
 - with trick, R2 first
- Hash join, pointers 1600
Hash-based Vs. Sort-based Joins

• Some similarities (see textbook), some dissimilarities
• Non-equi joins
• Memory requirement
• Sort order may be useful later
Summary

• **NLJ** ok for “small” relations (relative to memory size)

• For equi-join, where relations not sorted and no indexes exist, **Hybrid Hash Join** usually best
• Sort-Merge Join good for non-equi-join (e.g., R1.C > R2.C)
• If relations already sorted, use Merge Join
• If index exists, it could be useful
 – Depends on expected result size and index clustering
• Join techniques apply to Union, Intersection, Difference
Buffer Management

- DBMS Buffer Manager
- May control memory directly (i.e., does not allocate from virtual memory controlled by OS)
Buffer Replacement Policies

- Least Recently Used (LRU)
- Second-chance
- Most Recently Used (MRU)
- FIFO
Interaction between Operators and Buffer Management

• Memory (our M parameter) may change while an operator is running

• Some operators can take advantage of specific buffer replacement policies
 – E.g., Rocking for Block-based NLJ
Roadmap

- A simple operator: Nested Loop Join
- Preliminaries
 - Cost model
 - Clustering
 - Operator classes
- Operator implementation (with examples from joins)
 - Scan-based
 - Sort-based
 - Using existing indexes
 - Hash-based
- Buffer Management
- Parallel Processing