Data-intensive Computing Systems
Query Optimization (Cost-based optimization)

Shivnath Babu
Query Optimization Problem

Pick the best plan from the space of physical plans
Cost-Based Optimization

• Prune the space of plans using heuristics
• Estimate cost for remaining plans
 – Be smart about how you iterate through plans
• Pick the plan with least cost

Focus on queries with joins
Heuristics for pruning plan space

• Predicates as early as possible
• Avoid plans with cross products
• Only left-deep join trees
Physical Plan Selection

Logical Query Plan

\[\text{P1} \quad \text{P2} \quad \ldots \quad \text{Pn} \]

\[\text{C1} \quad \text{C2} \quad \ldots \quad \text{Cn} \]

Pick minimum cost one

\{ Physical plans \}

\{ Costs \}
Review of Notation

- $T(R)$: Number of tuples in R
- $B(R)$: Number of blocks in R
Simple Cost Model

\[
\text{Cost } (R \bowtie S) = T(R) + T(S)
\]

All other operators have 0 cost

Note: The simple cost model used for illustration only
Cost Model Example

Total Cost: $T(R) + T(S) + T(T) + T(X)$
Selinger Algorithm

• *Dynamic Programming* based
• Dynamic Programming:
 – General algorithmic paradigm
 – Exploits “principle of optimality”
 – Useful reading:
 • Chapter 16, *Introduction to Algorithms*, Cormen, Leiserson, Rivest
Principle of Optimality

Optimal for “whole” made up from optimal for “parts”
Principle of Optimality

Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5$

Optimal Plan:
Principle of Optimality

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5 \)

Optimal Plan:

Optimal plan for joining \(R3, R2, R4, R1 \)
Principle of Optimality

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5 \)

Optimal Plan:

Optimal plan for joining \(R3, R2, R4 \)
Exploiting Principle of Optimality

Query: $R_1 \bowtie R_2 \bowtie \ldots \bowtie R_n$

Optimal for joining R_1, R_2, R_3

Sub-Optimal for joining R_1, R_2, R_3
Exploiting Principle of Optimality

A sub-optimal sub-plan cannot lead to an optimal plan.

For joining R1, ..., Rn, a sub-optimal sub-plan cannot lead to an optimal plan.
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)

Progress of algorithm

\[
\begin{align*}
\{ R1, R2, R3, R4 \} \\
\{ R1, R2, R3 \} & \quad \{ R1, R2, R4 \} & \quad \{ R1, R3, R4 \} & \quad \{ R2, R3, R4 \} \\
\{ R1, R2 \} & \quad \{ R1, R3 \} & \quad \{ R1, R4 \} & \quad \{ R2, R3 \} & \quad \{ R2, R4 \} & \quad \{ R3, R4 \} \\
\{ R1 \} & \quad \{ R2 \} & \quad \{ R3 \} & \quad \{ R4 \}
\end{align*}
\]
Notation

\[\text{OPT} \left(\{ R1, R2, R3 \} \right) :\]

Cost of optimal plan to join \(R1, R2, R3 \)

\[\text{T} \left(\{ R1, R2, R3 \} \right) :\]

Number of tuples in \(R1 \bowtie R2 \bowtie R3 \)
Selinger Algorithm:

$$\text{OPT}(\{R1, R2, R3\}) :$$

- $$\text{OPT}(\{R1, R2\}) + T(\{R1, R2\}) + T(R3)$$
- $$\text{OPT}(\{R2, R3\}) + T(\{R2, R3\}) + T(R1)$$
- $$\text{OPT}(\{R1, R3\}) + T(\{R1, R3\}) + T(R2)$$

Note: Valid only for the simple cost model
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)

Progress of algorithm
Selinger Algorithm:

Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4$

Optimal plan:
More Complex Cost Model

• DB System:
 – Two join algorithms:
 • Tuple-based nested loop join
 • Sort-Merge join
 – Two access methods
 • Table Scan
 • Index Scan (all indexes are in memory)
 – Plans pipelined as much as possible
• Cost: Number of disk I/O s
Cost of Table Scan

Table Scan

Cost: B (R)
Cost of Clustered Index Scan

Cost: B (R)
Cost of Clustered Index Scan

R.A > 50

R

X

Index Scan

Cost: B (X)
Cost of Non-Clustered Index Scan

Index Scan

Cost: $T(R)$
Cost of Non-Clustered Index Scan

Index Scan

R.A > 50

Cost: T (X)

R

X
Cost of Tuple-Based NLJ

Cost for entire plan:

\[\text{Cost (Outer)} + T(X) \times \text{Cost (Inner)} \]
Cost of Sort-Merge Join

Cost for entire plan:

\[
\text{Cost (Right) + Cost (Left) + 2 \left(B(X) + B(Y) \right) }
\]
Cost of Sort-Merge Join

Cost for entire plan:

\[\text{Cost (Right)} + \text{Cost (Left)} + 2 \cdot B(Y) \]

Sorted on R1.A
Cost of Sort-Merge Join

Cost for entire plan:

Cost (Right) + Cost (Left)

Sorted on R2.A

Sorted on R1.A

R1.A = R2.A

Merge

X

Y

Left

Right

R1

R2
Cost of Sort-Merge Join

Bottom Line: Cost depends on sorted-ness of inputs
Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5 \)

Optimal plan:

- **Plan X**
 - **SMJ**
 - (R1.A = R2.A)
 - **Scan**
 - **R1**

Is Plan X the optimal plan for joining R2, R3, R4, R5?
Violation of Principle of Optimality

Plan X
(sorted on R2.A)

Suboptimal plan for joining R2,R3,R4,R5

Plan Y
(unsorted on R2.A)

Optimal plan for joining R2,R3,R4,R4
Principle of Optimality?

Query: \[R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5 \]

Optimal plan:

Can we assert anything about plan X?
Weaker Principle of Optimality

If plan X produces output sorted on R2.A then
plan X is the **optimal plan** for joining R2, R3, R4, R5
that produces output sorted on R2.A

If plan X produces output unsorted on R2.A then
plan X is the **optimal plan** for joining R2, R3, R4, R5
Interesting Order

• An attribute is an interesting order if:
 – participates in a join predicate
 – Occurs in the Group By clause
 – Occurs in the Order By clause
Interesting Order: Example

Select *
From R1(A,B), R2(A,B), R3(B,C)

Modified Selinger Algorithm

{R1,R2,R3}

{R1,R2} {R1,R2}(A) {R1,R2}(B) {R2,R3} {R2,R3}(A) {R2,R3}(B)

{R1} {R1}(A) {R2} {R2}(A) {R2}(B) {R3} {R3}(B)
Notation

\{R1, R2\} (C)

Optimal way of joining R1, R2 so that output is sorted on attribute R2.C
Modified Selinger Algorithm

{R1,R2,R3}

{R1,R2} {R1,R2}(A) {R1,R2}(B) {R2,R3} {R2,R3}(A) {R2,R3}(B)

{R1} {R1}(A) {R2} {R2}(A) {R2}(B) {R3} {R3}(B)