Due Date: October 21, 2014

Remark: Prove the correctness of every algorithm and analyze its running time.

Problem 1: Given a set $X = \{X_1, X_2, \ldots, X_n\} \subset \mathbb{N}$ and a number $t \in \mathbb{N}$, give an $O(nt)$ time algorithm that either returns a subset of X which sums to t if there exists one, or reports that such a subset does not exist.

Problem 2: Prove that if $\text{co-NP} \neq \text{NP}$ then $\text{NP} \neq P$.

Problem 3: Given an undirected graph $G = (V, E)$ and a positive integer k, show that it is NP-complete to decide whether there exists a subset $X \subseteq V$ with $|X| \leq k$ such that deleting X from G makes it acyclic.

Problem 4: Suppose we are given a set $X = \{x_1, \ldots, x_q\}$ and a collection $C = \{C_1, \ldots, C_k\}$ of 3-element subsets of X ($q \leq k$). Show that it is NP-complete to decide whether C contains an exact cover for X, i.e., a subset $C' \subseteq C$ such that every element of X occurs in exactly one member of C'.

Problem 5: Given disjoint sets X, Y, and Z, and given a set $T \subseteq X \times Y \times Z$ of ordered triples, a subset $M \subseteq T$ is a 3-dimensional matching if each element of $X \cup Y \cup Z$ is contained in at most one of these triples. The maximum 3-dimensional matching problem is to find a 3-dimensional matching M of maximum size. Give a polynomial-time algorithm that finds a 3-dimensional matching of size at least $1/3$ times the maximum possible size.