More search:
When the path to the solution doesn’t matter

Instructor: Vincent Conitzer
Search where the path doesn’t matter

• So far, looked at problems where the path was the solution
 – Traveling on a graph
 – Eights puzzle

• However, in many problems, we just want to find a goal state
 – Doesn’t matter how we get there
Queens puzzle

- Place eight queens on a chessboard so that no two attack each other.
Search formulation of the queens puzzle

- **Successors**: all valid ways of placing additional queen on the board; **goal**: eight queens placed

![Diagram of the queens puzzle](image)

How big is this tree? How many leaves?
Search formulation of the queens puzzle

- **Successors**: all valid ways of placing a queen in the next column; **goal**: eight queens placed

Search tree size?
What kind of search is best?
Constraint satisfaction problems (CSPs)

- Defined by:
 - A set of variables x_1, x_2, \ldots, x_n
 - A domain D_i for each variable x_i
 - Constraints c_1, c_2, \ldots, c_m

- A constraint is specified by
 - A subset (often, two) of the variables
 - All the allowable joint assignments to those variables

- Goal: find a complete, consistent assignment

- Queens problem: (other examples in next slides)
 - x_i in $\{1, \ldots, 8\}$ indicates in which row in the ith column to place a queen
 - For example, constraint on x_1 and x_2: $\{(1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (2,4), (2,5), \ldots, (3,1), (3,5), \ldots \}\}$
Graph coloring

- Fixed number of colors; no two adjacent nodes can share a color
Satisfiability

• Formula in conjunctive normal form:

\[(x_1 \lor x_2 \lor \neg(x_4)) \land (\neg(x_2) \lor \neg(x_3)) \land \ldots\]

– Label each variable \(x_j\) as true or false so that the formula becomes true

Constraint hypergraph:
each hyperedge represents a constraint
Cryptarithmetic puzzles

\[
\begin{array}{c}
T \ W \ O \\
T \ W \ O + \\
\hline
F \ O \ U \ R
\end{array}
\]

E.g., setting \(F = 1, \ O = 4, \ R = 8, \ T = 7, \ W = 3, \ U = 6 \) gives \(734 + 734 = 1468 \)
Cryptarithmetic puzzles…

T W O
T W O +
F O U R

Trick: introduce auxiliary variables X, Y

O + O = 10X + R
W + W + X = 10Y + U
T + T + Y = 10F + O

also need pairwise constraints between original variables if they are supposed to be different
Generic approaches to solving CSPs

• State: some variables assigned, others not assigned

• Naïve successors definition: any way of assigning a value to an unassigned variable results in a successor
 – Can check for consistency when expanding
 – How many leaves do we get in the worst case?

• CSPs satisfy commutativity: order in which actions applied does not matter

• Better idea: only consider assignments for a single variable at a time
 – How many leaves?
Choice of variable to branch on is still flexible!

- Do not always need to choose same variable at same level
- Each of variables A, B, C takes values in \{0,1\}

Can you prove that this never increases the size of the tree?
A generic recursive search algorithm

- **Search**(assignment, constraints)
- If assignment is complete, return it
- Choose an unassigned variable x
- For every value v in x’s domain, if setting x to v in assignment does not violate constraints:
 - Set x to v in assignment
 - result := Search(assignment, constraints)
 - If result != failure return result
 - Unassign x in assignment
- Return failure
Keeping track of remaining possible values

- For every variable, keep track of which values are still possible

- General heuristic: branch on variable with fewest values remaining

only one possibility for last column; might as well fill in

now only one left for other two columns

done! (no real branching needed!)
Arc consistency

• Take two variables connected by a constraint
• Is it true that for every remaining value d of the first variable, there exists some value d' of the other variable so that the constraint is satisfied?
 – If so, we say the arc from the first to the second variable is consistent
 – If not, can remove the value d

• General concept: constraint propagation

Is the arc from the fifth to the eighth column consistent?
What about the arc from the eighth to the fifth?
Maintaining arc consistency

- Maintain a queue Q of all ordered pairs of variables with a constraint (arcs) that need to be checked
- Take a pair (x, y) from the queue
- For every value v in x’s domain, check if there is some value w in y’s domain so that $x=v, y=w$ is consistent
 - If not, remove v from x’s domain
- If anything was removed from x’s domain, add every arc (z, x) to Q
- Continue until Q is empty

- Runtime?
- n variables, d values per domain
- $O(n^2)$ arcs;
- each arc is added to the queue at most d times;
- consistency of an arc can be checked with d^2 lookups in the constraint’s table;
- so $O(n^2d^3)$ lookups
- Can we do better?
Maintaining arc consistency (2)

• For every arc \((x, y)\), for every value \(v\) for \(x\), maintain the number \(n((x, y), v)\) of remaining values for \(y\) that are consistent with \(x=v\)

• Every time that some \(n((x, y), v) = 0\),
 – remove \(v\) from \(x\)’s domain;
 – for every arc \((z, x)\), for every value \(w\) for \(z\), if \((x=v, z=w)\) is consistent with the constraint, reduce \(n((z, x), w)\) by 1

• Runtime:
 – for every arc \((z, x)\) \((n^2\) of them), a value is removed from \(x\)’s domain at most \(d\) times;
 – each time we have to check for at most \(d\) of \(z\)’s values whether it is consistent with the removed value for \(x\);
 – so \(O(n^2d^2)\) lookups
An example where arc consistency fails

• $A = B, B = C, C \neq A$ – obviously inconsistent
 – ~ Moebius band

• However, arc consistency cannot eliminate anything
Tree-structured constraint graphs

- Suppose we only have pairwise constraints and the graph is a tree (or forest = multiple disjoint trees)

```
X1
/   \
X2   X3
   /   \
  X5   X4
```

- Dynamic program for solving this (linear in #variables):
 - Starting from the leaves and going up, for each node x, compute all the values for x such that the subtree rooted at x can be solved
 - Equivalently: apply arc consistency from each parent to its children, starting from the bottom
 - If no domain becomes empty, once we reach the top, easy to fill in solution
Generalizations of the tree-based approach

• What if our constraint graph is “almost” a tree?

• A cycle cutset is a set of variables whose removal results in a tree (or forest)
 - E.g. \{X_1\}, \{X_6\}, \{X_2, X_3\}, \{X_2, X_4\}, \{X_3, X_4\}

• Simple algorithm: for every internally consistent assignment to the cutset, solve the remaining tree as before (runtime?)

• Graphs of bounded treewidth can also be solved in polynomial time (won’t define these here)
A different approach: optimization

- Let’s say every way of placing 8 queens on a board, one per column, is feasible
- Now we introduce an objective: minimize the number of pairs of queens that attack each other
 - More generally, minimize the number of violated constraints
- Pure optimization
Local search: hill climbing

- Start with a complete state
- Move to successor with best (or at least better) objective value
 - Successor: move one queen within its column

Start state:

```
Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q
```

4 attacking pairs

Transition 1:

```
Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q
```

3 attacking pairs

Transition 2:

```
Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q
```

2 attacking pairs

- Local search can get stuck in a local optimum

```
Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q
```

no more improvements

```
Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q
```

local optimum

```
Q Q Q Q
Q Q Q Q
Q Q Q Q
Q Q Q Q
```

global optimum (also a local optimum)
Avoiding getting stuck with local search

• **Random restarts**: if your hill-climbing search fails (or returns a result that may not be optimal), restart at a random point in the search space
 – Not always easy to generate a random state
 – Will *eventually* succeed (why?)

• **Simulated annealing**:
 – Generate a random successor (possibly worse than current state)
 – Move to that successor with some probability that is sharply decreasing in the badness of the state
 – Also, over time, as the “temperature decreases,” probability of bad moves goes down
Constraint optimization

• Like a CSP, but with an objective
 – E.g., minimize number of violated constraints
 – Another example: no two queens can be in the same row or column (hard constraint), minimize number of pairs of queens attacking each other diagonally (objective)

• Can use all our techniques from before: heuristics, A*, IDA*, …

• Also popular: depth-first branch-and-bound
 – Like depth-first search, except do not stop when first feasible solution found; keep track of best solution so far
 – Given admissible heuristic, do not need to explore nodes that are worse than best solution found so far
Minimize #violated diagonal constraints

- **Cost of a node**: #violated diagonal constraints so far
- **No heuristic** (matter of definition; could just as well say that violated constraints so far is the heuristic and interior nodes have no cost)

Depth first branch and bound will find a suboptimal solution here first (no way to tell at this point this is worse than right node)

A* (=uniform cost here), IDA* (=iterative lengthening here) will never explore this node

Optimal solution is down here (cost 0)
Linear programs: example

• We make reproductions of two paintings

maximize $3x + 2y$

subject to

$4x + 2y \leq 16$

$x + 2y \leq 8$

$x + y \leq 5$

$x \geq 0$

$y \geq 0$

• Painting 1 sells for $30, painting 2 sells for $20

• Painting 1 requires 4 units of blue, 1 green, 1 red

• Painting 2 requires 2 blue, 2 green, 1 red

• We have 16 units blue, 8 green, 5 red
Solving the linear program graphically

maximize $3x + 2y$

subject to

$4x + 2y \leq 16$

$x + 2y \leq 8$

$x + y \leq 5$

$x \geq 0$

$y \geq 0$

optimal solution: $x=3, y=2$
Modified LP

\begin{align*}
\text{maximize} & \quad 3x + 2y \\
\text{subject to} & \\
4x + 2y & \leq 15 \\
x + 2y & \leq 8 \\
x + y & \leq 5 \\
x & \geq 0 \\
y & \geq 0
\end{align*}

Optimal solution: \(x = 2.5, \quad y = 2.5 \)

Solution value = \(7.5 + 5 = 12.5 \)

Half paintings?
Integer (linear) program

Problem:

\[
\text{maximize } 3x + 2y \\
\text{subject to:} \\
4x + 2y \leq 15 \\
x + 2y \leq 8 \\
x + y \leq 5 \\
x \geq 0, \text{ integer} \\
y \geq 0, \text{ integer}
\]

Graphical Representation:

The graph illustrates the feasible region defined by the constraints. The optimal IP solution is found at the point (2, 3), with an objective value of 12. The optimal LP solution is found at the point (2.5, 2.5), with an objective value of 12.5.
Mixed integer (linear) program

maximize \(3x + 2y\)

subject to

\[4x + 2y \leq 15\]

\[x + 2y \leq 8\]

\[x + y \leq 5\]

\[x \geq 0\]

\[y \geq 0, \text{ integer}\]

optimal LP solution: \(x=2.5, y=2.5\) (objective 12.5)

optimal IP solution: \(x=2, y=3\) (objective 12)

optimal MIP solution: \(x=2.75, y=2\) (objective 12.25)
Solving linear/integer programs

- Linear programs can be solved efficiently
 - Simplex, ellipsoid, interior point methods…

- (Mixed) integer programs are NP-hard to solve
 - Quite easy to model many standard NP-complete problems as integer programs (try it!)
 - Search type algorithms such as branch and bound

- Standard packages for solving these
 - GNU Linear Programming Kit, CPLEX, …

- **LP relaxation** of (M)IP: remove integrality constraints
 - Gives upper bound on MIP (~admissible heuristic)
Satisfiability as an integer program

\[(x_1 \text{ OR } x_2 \text{ OR NOT}(x_4)) \text{ AND } (\text{NOT}(x_2) \text{ OR NOT}(x_3)) \text{ AND} \]

\[\ldots\]

becomes

for all \(x_j, 0 \leq x_j \leq 1, x_j \text{ integer} \) (shorthand: \(x_j \text{ in } \{0,1\}\))

\[x_1 + x_2 + (1-x_4) \geq 1\]

\[(1-x_2) + (1-x_3) \geq 1\]

\[\ldots\]

Solving integer programs is at least as hard as satisfiability, hence NP-hard (we have reduced SAT to IP)

Try modeling other NP-hard problems as (M)IP!
Solving the integer program with DFS branch and bound

trick: for integer x and k, either $x \leq k$ or $x \geq k+1$

maximize $3x + 2y$
subject to
$4x + 2y \leq 15$
$x + 2y \leq 8$
$x + y \leq 5$
$x \geq 3$

LP solution: $x=3$, $y=1.5$, obj = 12

maximize $3x + 2y$
subject to
$4x + 2y \leq 15$
$x + 2y \leq 8$
$x + y \leq 5$
$x \geq 3$
y ≥ 2

LP solution: infeasible

maximize $3x + 2y$
subject to
$4x + 2y \leq 15$
$x + 2y \leq 8$
$x + y \leq 5$
x ≥ 3
y ≤ 1
x ≥ 4

LP solution: infeasible

maximize $3x + 2y$
subject to
$4x + 2y \leq 15$
$x + 2y \leq 8$
$x + y \leq 5$
x ≥ 3
y ≤ 1
x ≤ 3

LP solution: $x=3$, $y=1$, obj = 11

LP solution: $x=3.25$, $y=1$, obj = 11.75

if LP solution is integral, we are done
Again with a more fortunate choice

maximize $3x + 2y$
subject to
$4x + 2y \leq 15$
$x + 2y \leq 8$
$x + y \leq 5$
x ≥ 3

LP solution: $x=3,$ $y=1.5,$ $obj = 12$

done!

maximize $3x + 2y$
subject to
$4x + 2y \leq 15$
$x + 2y \leq 8$
$x + y \leq 5$
x ≤ 2

LP solution: $x=2,$ $y=3,$ $obj = 12$

maximize $3x + 2y$
subject to
$4x + 2y \leq 15$
$x + 2y \leq 8$
x ≥ 3

LP solution: $x=2.5,$ $y=2.5,$ $obj = 12.5$