Two-player, zero-sum, perfect-information Games

Instructor: Vincent Conitzer
Game playing

• Rich tradition of creating game-playing programs in AI
• Many similarities to search
• Most of the games studied
 – have two players,
 – are zero-sum: what one player wins, the other loses
 – have perfect information: the entire state of the game is known to both players at all times
• E.g., tic-tac-toe, checkers, chess, Go, backgammon, …
• Will focus on these for now
• Recently more interest in other games
 – Esp. games without perfect information; e.g., poker
 • Need probability theory, game theory for such games
“Sum to 2” game

- Player 1 moves, then player 2, finally player 1 again
- Move = 0 or 1
- Player 1 wins if and only if all moves together sum to 2

Player 1’s utility is in the leaves; player 2’s utility is the negative of this
Backward induction (aka. minimax)

- From leaves upward, analyze best decision for player at node, give node a value
 - Once we know values, easy to find optimal action (choose best value)
Modified game

- From leaves upward, analyze best decision for player at node, give node a value

```
-1
  /  \
-2 -3
  /  \
-8
```
A recursive implementation

- **Value(state)**
- If state is terminal, return its value
- If (player(state) = player 1)
 - \(v := -\infty \)
 - For each action
 - \(v := \max(v, \text{Value}(\text{successor}(\text{state}, \text{action}))) \)
 - Return \(v \)
- Else
 - \(v := \infty \)
 - For each action
 - \(v := \min(v, \text{Value}(\text{successor}(\text{state}, \text{action}))) \)
 - Return \(v \)

Space? Time?
Do we need to see all the leaves?

- Do we need to see the value of the question mark here?
Do we need to see all the leaves?

- Do we need to see the values of the question marks here?
Alpha-beta pruning

- **Pruning** = cutting off parts of the search tree (because you realize you don’t need to look at them)
 - When we considered A* we also pruned large parts of the search tree

- Maintain **alpha** = value of the best option for player 1 along the path so far

- **Beta** = value of the best option for player 2 along the path so far
Pruning on beta

- Beta at node v is -1
- We know the value of node v is going to be at least 4, so the -1 route will be preferred
- No need to explore this node further
Pruning on alpha

- Alpha at node w is 6
- We know the value of node w is going to be at most -1, so the 6 route will be preferred
- No need to explore this node further
Modifying recursive implementation
to do alpha-beta pruning

- **Value(state, alpha, beta)**
- If state is terminal, return its value
- If (player(state) = player 1)
 - \(v := -\infty \)
 - For each action
 - \(v := \max(v, \text{Value}(\text{successor}(state, \text{action}), \alpha, \beta)) \)
 - If \(v \geq \beta \), return \(v \)
 - \(\alpha := \max(\alpha, v) \)
 - Return \(v \)
- Else
 - \(v := \infty \)
 - For each action
 - \(v := \min(v, \text{Value}(\text{successor}(state, \text{action}), \alpha, \beta)) \)
 - If \(v \leq \alpha \), return \(v \)
 - \(\beta := \min(\beta, v) \)
 - Return \(v \)
Benefits of alpha-beta pruning

- Without pruning, need to examine $O(b^m)$ nodes
- With pruning, depends on which nodes we consider first
 - If we choose a random successor, need to examine $O(b^{3m/4})$ nodes
 - If we manage to choose the best successor first, need to examine $O(b^{m/2})$ nodes
 - Practical heuristics for choosing next successor to consider get quite close to this
- Can effectively look twice as deep!
 - Difference between reasonable and expert play
Repeated states

• As in search, multiple sequences of moves may lead to the same state

• Again, can keep track of previously seen states (usually called a transposition table in this context)
 – May not want to keep track of all previously seen states…
Using evaluation functions

• Most games are too big to solve even with alpha-beta pruning

• Solution: Only look ahead to limited depth (nonterminal nodes)

• Evaluate nodes at depth cutoff by a heuristic (aka. evaluation function)

• E.g., chess:
 – Material value: queen worth 9 points, rook 5, bishop 3, knight 3, pawn 1
 – Heuristic: difference between players’ material values
Chess example

• White to move

<table>
<thead>
<tr>
<th>Ki</th>
<th></th>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Depth cutoff: 3 ply
 – Ply = move by one player

White

Rd8+

Black

Kb7

White

Rxf8

Re8

2

-1

...
Chess (bad) example

- White to move

<table>
<thead>
<tr>
<th></th>
<th>K</th>
<th>i</th>
<th>B</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td></td>
<td>p</td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td></td>
<td></td>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>

- Depth cutoff: 3 ply
 - Ply = move by one player

Depth cutoff obscures fact that white R will be captured
Addressing this problem

- Try to evaluate whether nodes are quiescent
 - Quiescent = evaluation function will not change rapidly in near future
 - Only apply evaluation function to quiescent nodes
- If there is an “obvious” move at a state, apply it before applying evaluation function
Playing against suboptimal players

• Minimax is optimal against other minimax players

• What about against players that play in some other way?
Many-player, general-sum games of perfect information

- Basic backward induction still works
 - No longer called minimax

What if other players do not play this way?

A diagram showing a tree of players and their utility values. The diagram illustrates the concept of backward induction in many-player games.
Games with random moves by “Nature”

- E.g., games with dice (Nature chooses dice roll)
- Backward induction still works…
 - Evaluation functions now need to be cardinally right (not just ordinally)
 - For two-player zero-sum games with random moves, can we generalize alpha-beta? How?

![Game Diagram]

- Player 1
- Nature
- Player 2

- (1,3)
- (3,2)
- (3,4)
- (1,2)
Games with imperfect information

- Players cannot necessarily see the whole current state of the game
 - Card games

- Ridiculously simple poker game:
 - Player 1 receives King (winning) or Jack (losing),
 - Player 1 can raise or check,
 - Player 2 can call or fold

- Dashed lines indicate indistinguishable states

- Backward induction does not work, need random strategies for optimality! (more later in course)
Intuition for need of random strategies

• Suppose my strategy is “raise on King, check on Jack”
 – What will you do?
 – What is your expected utility?
• What if my strategy is “always raise”?
• What if my strategy is “always raise when given King, 10% of the time raise when given Jack”?
The state of the art for some games

• Chess:
 – 1997: IBM Deep Blue defeats Kasparov
 – … there is still debate about whether computers are really better

• Checkers:
 – Computer world champion since 1994
 – … there was still debate about whether computers are really better…
 – until 2007: checkers solved optimally by computer

• Go:
 – Branching factor really high, seemed out of reach for a while
 – AlphaGo now appears superior to humans

• Poker:
 – AI now defeating top human players in 2-player (“heads-up”) games
 – 3+ player case much less well-understood
Is this of any value to society?

• Some of the techniques developed for games have found applications in other domains
 – Especially “adversarial” settings
• Real-world strategic situations are usually not two-player, perfect-information, zero-sum, …
• But game theory does not need any of those
• Example application: security scheduling at airports