Today’s topics

- Algorithms
- Complexity
- Upcoming
 - AI
- Reading
 - Brookshear 5.6

New machines vs. new algorithms

- New machine.
 - Costs $$$ or more.
 - Makes "everything" finish sooner.
 - Incremental quantitative improvements (Moore’s Law).
 - May not help much with some problems.

- New algorithm.
 - Costs $ or less.
 - Dramatic qualitative improvements possible! (million times faster)
 - May make the difference, allowing specific problem to be solved.
 - May not help much with some problems.

- Algorithmic Successes
 - N-body Simulation, Discrete Fourier transform, Quantum mechanical simulations, Pixar movies...

Algorithms

- What is an algorithm?

- So far we have been expressing our algorithms in Java code

- Pseudocode is a more informal notational system
 - Can’t be too pseudo. Should still be able to derive real code.
 - Worry about the problem solving and not compilation errors, file permission, or browser settings

- Coming up with solution is just the first problem

- For many problems, there may be several competing algorithms

- Computational complexity
 - Rigorous and useful framework for comparing algorithms and predicting performance

Linear Growth

- Grade school addition
 - Work is proportional to number of digits N
 - Linear growth: kN for some constant k

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

- How many reads? How many writes? How many operations?
Quadratic Growth

- Grade school multiplication
 - Work is proportional to square of number of digits \(N \)
 - Quadratic growth: \(kN^2 \) for some constant \(k \)

<table>
<thead>
<tr>
<th>7 & 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 4 & 2</td>
</tr>
<tr>
<td>1 & 5</td>
</tr>
<tr>
<td>- 3 & 1</td>
</tr>
<tr>
<td>3 & 2</td>
</tr>
</tbody>
</table>

\[\begin{array}{c}
7 & 8 \\
- & 4 & 2 \\
1 & 5 \\
3 & 1 \\
3 & 2 \\
\end{array} \]

\[\begin{array}{c}
8 & 5 & 5 & 6 \\
1 & 2 & 0 \\
3 & 2 & 4 & 0 & 0 \\
2 & 5 & 6 & 8 & 0 & 0 & 0 \\
2 & 9 & 2 & 0 & 0 & 7 & 6 \\
\end{array} \]

N = 2

- How many reads? How many writes? How many operations?

Searching

- Determine the location or existence of an element in a collection of elements of the same type
- Easier to search large collections when the elements are already sorted
 - finding a phone number in the phone book
 - looking up a word in the dictionary
- What if the elements are not sorted?

Sequential search

- Given a collection of \(n \) unsorted elements, compare each element in sequence
- Worst-case: Unsuccessful search
 - search element is not in input
 - make \(n \) comparisons
 - search time is linear
- Average-case:
 - expect to search \(\frac{1}{2} \) the elements
 - make \(n/2 \) comparisons
 - search time is linear

Searching sorted input

- If the input is already sorted, we can search more efficiently than linear time
- Example: “Higher-Lower”
 - think of a number between 1 and 1000
 - have someone try to guess the number
 - if they are wrong, you tell them if the number is higher than their guess or lower
- Strategy?
- How many guesses should we expect to make?
Logarithms Revisited

- Power to which any other number \(a \) must be raised to produce \(n \)
 - \(a \) is called the base of the logarithm
- Frequently used logarithms have special symbols
 - \(\lg n = \log_2 n \)
 logarithm base 2
 - \(\ln n = \log_e n \)
 natural logarithm (base e)
 - \(\log n = \log_{10} n \)
 common logarithm (base 10)
- If we assume \(n \) is a power of 2, then the number of times we can recursively divide \(n \) numbers in half is \(\lg n \)

Best Strategy

- Always pick the number in the middle of the range
- Why?
 - you eliminate half of the possibilities with each guess
- We should expect to make at most
 - \(\lg 1000 \approx 10 \) guesses
- Binary search
 - search \(n \) sorted inputs in logarithmic time

Sequential vs. binary search

- Average-case running time of sequential search is linear
- Average-case running time of binary search is logarithmic
- Number of comparisons:

<table>
<thead>
<tr>
<th>(n)</th>
<th>sequential search</th>
<th>binary search</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>256</td>
<td>128</td>
<td>8</td>
</tr>
<tr>
<td>4096</td>
<td>2048</td>
<td>12</td>
</tr>
<tr>
<td>65536</td>
<td>32768</td>
<td>16</td>
</tr>
</tbody>
</table>

Sorting

- Given \(n \) items, rearrange them so that they are in increasing order
- A key recurring problem
- Many different methods, how do we choose?
- Given a set of cards, describe how you would sort them:
 - Given a set of words, describe how you would sort them in alphabetical order?
Comparisons in insertion sort

- **Worst case**
 - element k requires $(k-1)$ comparisons
 - total number of comparisons:

 $$0+1+2+ \ldots + (n-1) = \frac{1}{2} (n)(n-1)$$

 $$= \frac{1}{2} (n^2-n)$$

- **Best case**
 - elements 2 through n each require one comparison
 - total number of comparisons:

 $$1+1+1+ \ldots + 1 = n-1$$

(n-1) times

Running time of insertion sort

- **Best case running time is linear**
- **Worst case running time is quadratic**
- **Average case running time is also quadratic**
 - on average element k requires $(k-1)/2$ comparisons
 - total number of comparisons:

 $$\frac{1}{2} (0+1+2+ \ldots + n-1) = \frac{1}{4} (n)(n-1)$$

 $$= \frac{1}{4} (n^2-n)$$

Comparisons in merging

- **Merging two sorted lists of size m requires at least m and at most $2m-1$ comparisons**
 - m comparisons if all elements in one list are smaller than all elements in the second list
 - $2m-1$ comparisons if the smallest element alternates between lists

Comparisons at each merge

<table>
<thead>
<tr>
<th>#lists</th>
<th>#elements in each list</th>
<th>#merges</th>
<th>#comparisons per merge</th>
<th>#comparisons total</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1</td>
<td>$n/2$</td>
<td>1</td>
<td>$n/2$</td>
</tr>
<tr>
<td>$n/2$</td>
<td>2</td>
<td>$n/4$</td>
<td>3</td>
<td>$3n/4$</td>
</tr>
<tr>
<td>$n/4$</td>
<td>4</td>
<td>$n/8$</td>
<td>7</td>
<td>$7n/8$</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>2</td>
<td>$n/2$</td>
<td>1</td>
<td>$n-1$</td>
<td>$n-1$</td>
</tr>
</tbody>
</table>
Comparisons in mergesort
- Total number of comparisons is the sum of the number of comparisons made at each merge
 - at most n comparisons at each merge
 - the number of times we can recursively divide n numbers in half is $\log_2 n$, so there are $\log_2 n$ merges
 - there are at most $n \log_2 n$ comparisons total

Comparison of sorting algorithms
- Best, worst and average-case running time of mergesort is $\Theta(n \log n)$
- Compare to average case behavior of insertion sort:

<table>
<thead>
<tr>
<th>n</th>
<th>Insertion sort</th>
<th>Mergesort</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>100</td>
<td>2500</td>
<td>664</td>
</tr>
<tr>
<td>1000</td>
<td>250000</td>
<td>9965</td>
</tr>
<tr>
<td>10000</td>
<td>25000000</td>
<td>132877</td>
</tr>
<tr>
<td>100000</td>
<td>2500000000</td>
<td>1660960</td>
</tr>
</tbody>
</table>

Quicksort
- Most commonly used sorting algorithm
- One of the fastest sorts in practice
- Best and average-case running time is $O(n \log n)$
- Worst-case running time is quadratic
- Runs very fast on most computers when implemented correctly

Algorithmic successes
- N-body Simulation
- Discrete Fourier transform
- Quantum mechanical simulations
- Pixar movies...