Experimenting with Grammars to Generate L-Systems

November 30, 2009

Prof. Susan Rodger
Computer Science Dept

L-Systems

- Model biological systems and create fractals
- Similar to Chomsky grammars, except all variables are replaced in each step, not just one!
- Successive strings are interpreted as strings of render commands and displayed graphically

English Grammar

- `<sentence>` \rightarrow `<subject>` `<verb>` `<direct obj>`
- `<subject>` \rightarrow `<noun>` $|$ `<article>` `<noun>`
- `<verb>` \rightarrow hit $|$ ran $|$ ate
- `<direct obj>` \rightarrow `<article>` `<noun>` $|$ `<noun>`
- `<noun>` \rightarrow Fritz $|$ ball
- `<article>` \rightarrow the $|$ an $|$ a

- Variables (shown in `< >`) are replaced by right side of arrow

Example: Derive a sentence

- `<sentence>` \rightarrow `<subject>` `<verb>` `<direct obj>`
 \rightarrow `<noun>` `<verb>` `<direct obj>`
 \rightarrow Fritz `<verb>` `<direct obj>`
 \rightarrow Fritz hit `<direct obj>`
 \rightarrow Fritz hit `<article>` `<noun>`
 \rightarrow Fritz hit the `<noun>`
 \rightarrow Fritz hit the ball
Parts of an L-System (a type of grammar)

- Defined over an alphabet
- Three parts
 - Axiom (starting place)
 - Replacement rules (replaces all variables at once)
 - Geometric rules (for drawing)
 - \(g \) means move forward one unit with pen down
 - \(f \) means move forward one unit with pen up
 - \(+ \) means turn right by the default angle
 - \(- \) means turn left by the default angle

Example – lsys-samp1

- Axiom
- Replacement Rules
- Geometric Rules

NOTE: Must use spaces as separator between symbols

Example – lsys-samp1 (cont)

- Derivation of strings

```
X
gggX+Y
ggggggX + Y + g
ggggggggggX+Y+g+g
```

More Geometric rules

- \% change direction 180 degrees
- ~ decrement the width of the next lines
- [save in stack current state info
-] recover from stack state info
- { start filled in polygon
- } end filled in polygon

Note: replace both \(X \) and \(Y \) each time
Example – lsys-samp2

Example – lsys-samp2 (cont)

Example – tree

Example – tree rendered
Stochastic Tree

- Add a rule $T \rightarrow T$
- Now there is a choice for T, draw a line or don’t

Same Stochastic L-System

- Rendered 3 times, each at 8th derivation

JFLAP

- JFLAP is available for free: www.jflap.org
- JFLAP was developed by many Duke undergraduates over many years, has many other parts to it for studying theoretical computer science concepts
- JFLAP is downloaded in over 160 countries.
- Duke School of Environment uses L-systems to model pine needles in Duke Forest

Exercise 1

- Write an L-system for the picture below.
- Symbols needed are: g, + and one variable
- Distance of the line is 100, rendering at 1 draws the first line, each additional render draws another line.
Exercise 2

- Write an L-system for the picture below.
- Symbols may need: g and +
- Distance is set to 10, angle to 90, first rendering draws smallest square, additional render draws next larger square

Exercise 3

- Write an L-system for the picture below.
- Symbols may need: g, %, +
- Distance set to 15, angle set to 45, side of square is length 30, first diagonal line is 60
- 1st, 2nd and 6th renderings shown

Exercise 4

- Write an L-system for the picture below (this is a sample tree to focus on branching, don’t look at the tree from before).
- Symbols may need: g, +, -, []
- Angle set to 30, distance set to 20
- 3rd rendering shown

Exercise 5

- Write an L-system for the picture below.
- Symbols may need: g, +, -, []
- Angle set to 90, distance set to 15
- Shows 1st, 2nd and 3rd renderings