Analyzing Algorithms

- **Consider three solutions to SortByFreqs**
 - Sort, then scan looking for changes
 - Insert into Set, then count each unique string
 - Find unique elements without sorting, sort these, then count each unique string
 - Use a Map (TreeMap or HashMap)

- **We want to discuss trade-offs of these solutions**
 - Ease to develop, debug, verify
 - Runtime efficiency
 - Vocabulary for discussion
What is big-Oh about? (preview)

- Intuition: avoid details when they don’t matter, and they don’t matter when input size (N) is big enough
 - For polynomials, use only leading term, ignore coefficients

 \[
 \begin{align*}
 y &= 3x & y &= 6x - 2 & y &= 15x + 44 \\
 y &= x^2 & y &= x^2 - 6x + 9 & y &= 3x^2 + 4x
 \end{align*}
 \]

- The first family is \(\mathcal{O}(n) \), the second is \(\mathcal{O}(n^2) \)
 - Intuition: family of curves, generally the same shape
 - More formally: \(\mathcal{O}(f(n)) \) is an upper-bound, when \(n \) is large enough the expression \(cf(n) \) is larger
 - Intuition: linear function: double input, double time, quadratic function: double input, quadruple the time
Recall adding to list (class handout)

- **Add one element to front of ArrayList**
 - Shift all elements
 - Cost N for N-element list
 - Cost $1 + 2 + ... + N = N(N+1)/2$ if repeated

- **Add one element to front of LinkedList**
 - No shifting, add one link
 - Cost is independent of N, *constant-time* cost
 - Cost $1 + 1 + ... + 1 = N$ if repeated
More on O-notation, big-Oh

- Big-Oh hides/obscures some empirical analysis, but is good for general description of algorithm
 - Allows us to compare algorithms in the limit
 - 20N hours vs N^2 microseconds: which is better?
- O-notation is an upper-bound, this means that N is O(N), but it is also O(N^2); we try to provide tight bounds.

Formally:
 - A function g(N) is O(f(N)) if there exist constants c and n such that g(N) < cf(N) for all N > n
Which graph is “best” performance?
Big-Oh calculations from code

- Search for element in an array:
 - What is complexity of code (using O-notation)?
 - What if array doubles, what happens to time?

```java
for(int k=0; k < a.length; k++) {
    if (a[k].equals(target)) return true;
}
return false;
```

- Complexity if we call N times on M-element vector?
 - What about best case? Average case? Worst case?
Amortization: Expanding ArrayLists

- Expand capacity of list when add() called
- Calling add N times, doubling capacity as needed

<table>
<thead>
<tr>
<th>Item #</th>
<th>Resizing cost</th>
<th>Cumulative cost</th>
<th>Resizing Cost per item</th>
<th>Capacity After add</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3-4</td>
<td>4</td>
<td>6</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>5-8</td>
<td>8</td>
<td>14</td>
<td>1.75</td>
<td>8</td>
</tr>
</tbody>
</table>

$2^{m+1} - 2^m$

- 2
- 2
- $2^{m+2} - 2$
- around 2
- 2^m

- What if we grow size by one each time?
Some helpful mathematics

- $1 + 2 + 3 + 4 + \ldots + N$
 - $N(N+1)/2$, exactly $= N^2/2 + N/2$ which is $O(N^2)$ why?

- $N + N + N + \ldots + N$ (total of N times)
 - $N \times N = N^2$ which is $O(N^2)$

- $N + N + N + \ldots + N + \ldots + N$ (total of $3N$ times)
 - $3N \times N = 3N^2$ which is $O(N^2)$

- $1 + 2 + 4 + \ldots + 2^N$
 - $2^{N+1} - 1 = 2 \times 2^N - 1$ which is $O(2^N)$

- Impact of last statement on adding 2^{N+1} elements to a vector
 - $1 + 2 + \ldots + 2^N + 2^{N+1} = 2^{N+2} - 1 = 4 \times 2^N - 1$ which is $O(2^N)$
 resizing + copy = total (let $x = 2^N$)
Running times @ 10^6 instructions/sec

<table>
<thead>
<tr>
<th>N</th>
<th>$O(\log N)$</th>
<th>$O(N)$</th>
<th>$O(N \log N)$</th>
<th>$O(N^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.000003</td>
<td>0.00001</td>
<td>0.000033</td>
<td>0.0001</td>
</tr>
<tr>
<td>100</td>
<td>0.000007</td>
<td>0.00010</td>
<td>0.000664</td>
<td>0.1000</td>
</tr>
<tr>
<td>1,000</td>
<td>0.000010</td>
<td>0.00100</td>
<td>0.010000</td>
<td>1.0</td>
</tr>
<tr>
<td>10,000</td>
<td>0.000013</td>
<td>0.01000</td>
<td>0.132900</td>
<td>1.7 min</td>
</tr>
<tr>
<td>100,000</td>
<td>0.000017</td>
<td>0.10000</td>
<td>1.661000</td>
<td>2.78 hr</td>
</tr>
<tr>
<td>1,000,000</td>
<td>0.000020</td>
<td>1.0</td>
<td>19.9</td>
<td>11.6 day</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>0.000030</td>
<td>16.7 min</td>
<td>18.3 hr</td>
<td>318 centuries</td>
</tr>
</tbody>
</table>
Getting in front

- **Suppose we want to add a new element**
 - At the back of a string or an ArrayList or a ...
 - At the front of a string or an ArrayList or a ...
 - Is there a difference? Why? What's complexity?

- **Suppose this is an important problem: we want to grow at the front (and perhaps at the back)**
 - Think editing film clips and film splicing
 - Think DNA and gene splicing

- **Self-referential data structures to the rescue**
 - References, reference problems, recursion, binky
What’s the Difference Here?

- How does find-a-track work? Fast forward?
Contrast LinkedList and ArrayList

- See ISimpleList, SimpleLinkedList, SimpleArrayList
 - Meant to illustrate concepts, not industrial-strength
 - Very similar to industrial-strength, however

- ArrayList --- why is access O(1) or constant time?
 - Storage in memory is contiguous, all elements same size
 - Where is the 1st element? 40th? 360th?
 - Doesn’t matter what’s in the ArrayList, everything is a pointer or a reference (what about null?)
What about LinkedList?

- Why is access of N^{th} element linear time?
- Why is adding to front constant-time $O(1)$?
ArrayLists and linked lists as ADTs

- As an ADT (abstract data type) ArrayLists support
 - *Constant-time* or $O(1)$ access to the k-th element
 - *Amortized* linear or $O(n)$ storage/time with add
 - Total storage used in n-element vector is approx. $2n$, spread over all accesses/additions (why?)
 - Adding a new value in the middle of an ArrayList is expensive, linear or $O(n)$ because shifting required

- Linked lists as ADT
 - Constant-time or $O(1)$ insertion/deletion anywhere, but...
 - Linear or $O(n)$ time to find where, sequential search

- Good for *sparse* structures: when data are scarce, allocate exactly as many list elements as needed, no wasted space/copying (e.g., what happens when vector grows?)
Linked list applications

- Remove element from middle of a collection, maintain order, no shifting. Add an element in the middle, no shifting
 - What’s the problem with a vector (array)?
 - Emacs visits several files, internally keeps a linked-list of buffers
 - Naively keep characters in a linked list, but in practice too much storage, need more esoteric data structures

- What’s \((3x^5 + 2x^3 + x + 5) + (2x^4 + 5x^3 + x^2 + 4x)\) ?
 - As a vector \((3, 0, 2, 0, 1, 5)\) and \((0, 2, 5, 1, 4, 0)\)
 - As a list \(((3, 5), (2, 3), (1, 1), (5, 0))\) and ________?
 - Most polynomial operations sequentially visit terms, don’t need random access, do need “splicing”

- What about \((3x^{100} + 5)\)?
Linked list applications continued

- If programming in C, there are no “growable-arrays”, so typically linked lists used when # elements in a collection varies, isn’t known, can’t be fixed at compile time
 - Could grow array, potentially expensive/wasteful especially if # elements is small.
 - Also need # elements in array, requires extra parameter
 - With linked list, one pointer used to access all the elements in a collection

- Simulation/modeling of DNA gene-splicing
 - Given list of millions of CGTA... for DNA strand, find locations where new DNA/gene can be spliced in
 - Remove target sequence, insert new sequence
Linked lists, CDT and ADT

- As an ADT
 - A list is empty, or contains an element and a list
 - $(\)$ or $(x, (y, (\)))$

- As a picture

- As a CDT (concrete data type)

```java
public class Node
{
    String value;
    Node next;
}
```

```java
Node p = new Node();
p.value = "hello";
p.next = null;
```
Building linked lists

- Add words to the front of a list (draw a picture)
 - Create new node with next pointing to list, reset start of list

```java
public class Node {
    String value;
    Node next;
    Node(String s, Node link) {
        value = s;
        next = link;
    }
}

Node list = null;
while (scanner.hasNext()) {
    list = new Node(scanner.next(), list);
}
```

- What about adding to the end of the list?
Dissection of add-to-front

- List initially empty
- First node has first word

- Each new word causes new node to be created
 - New node added to front
- Rhs of operator = completely evaluated before assignment

```
list = new Node(word,list);
Node(String s, Node link)
{ info = s; next = link; }
```
Standard list processing (iterative)

- Visit all nodes once, e.g., count them or *process* them

```java
public int size(Node list) {
    int count = 0;
    while (list != null) {
        count++;
        list = list.next;
    }
    return count;
}
```

- What changes in code above if we change what “process” means?
 - Print nodes?
 - Append “s” to all strings in list?
Nancy Leveson: Software Safety

Founded the field

- Mathematical and engineering aspects
 - Air traffic control
 - Microsoft word

"C++ is not state-of-the-art, it's only state-of-the-practice, which in recent years has been going backwards"

- Software and steam engines: once extremely dangerous?

- THERAC 25: Radiation machine that killed many people
Building linked lists continued

- What about adding a node to the end of the list?
 - Can we search and find the end?
 - If we do this every time, what’s complexity of building an N-node list? Why?

- Alternatively, keep pointers to first and last nodes of list
 - If we add node to end, which pointer changes?
 - What about initially empty list: values of pointers?
 - Will lead to consideration of header node to avoid special cases in writing code

- What about keeping list in order, adding nodes by splicing into list? Issues in writing code? When do we stop searching?
Standard list processing (recursive)

- Visit all nodes once, e.g., count them

```java
public int recsize(Node list) {
    if (list == null) return 0;
    return 1 + recsize(list.next);
}
```

- Base case is almost always empty list: null pointer
 - Must return correct value, perform correct action
 - Recursive calls use this value/state to anchor recursion
 - Sometimes one node list also used, two “base” cases
- Recursive calls make progress towards base case
 - Almost always using list.next as argument
Recursion with pictures

- Counting recursively

```java
int recsize(Node list)
{
    if (list == null)
        return 0;
    return 1 +
        recsize(list.next);
}
```

System.out.println(recsize(ptr));
Recursion and linked lists

- **Print nodes in reverse order**
 - Print all but first node and...
 - Print first node before or after other printing?

```java
public void print(Node list) {
    if (list != null) {
        System.out.println(list.info);
        System.out.println(list.info);
        System.out.println(list.info);
    }
}
```
What is complexity of Build? (what does it do?)

```java
public Node build(int n) {
    if (null == n) return null;
    Node first = new Node(n, build(n-1));
    for(int k = 0; k < n-1; k++) {
        first = new Node(n,first);
    }
    return first;
}
```

Write an expression for T(n) and for T(0), solve.

- Let T(n) be time for build to execute with n-node list
- T(n) = T(n-1) + O(n)
Changing a linked list recursively

- Pass list to method, return altered list, assign to list
 - Idiom for changing value parameters

```java
list = change(list, "apple");
public Node change(Node list, String key) {
    if (list != null) {
        list.next = change(list.next, key);
        if (list.info.equals(key)) return list.next;
        else return list;
    }
    return null;
}
```

- What does this code do? How can we reason about it?
 - Empty list, one-node list, two-node list, n-node list
 - Similar to proof by induction