From doubly-linked lists to binary trees

- Instead of using prev and next to point to a linear arrangement, use them to divide the universe in half
 - Similar to binary search, everything less goes left, everything greater goes right
- How do we search?
- How do we insert?

Basic tree definitions

- Binary tree is a structure:
 - empty
 - root node with left and right subtrees
- terminology: parent, children, leaf node, internal node, depth, height, path
 - link from node N to M then N is parent of M
 - M is child of N
 - leaf node has no children
 - internal node has 1 or 2 children
 - path is sequence of nodes, N₁, N₂, ..., Nₖ
 - Nᵢ is parent of Nᵢ₊₁
 - sometimes edge instead of node
 - depth (level) of node: length of root-to-node path
 - level of root is 1 (measured in nodes)
 - height of node: length of longest node-to-leaf path
 - height of tree is height of root

Implementing binary trees

- Trees can have many shapes: short/bushy, long/stringy
 - if height is h, number of nodes is between h and 2ʰ⁻¹
 - single node tree: height = 1, if height = 3
- Java implementation, similar to doubly-linked list

```java
public class TreeNode {
    String info;
    TreeNode left;
    TreeNode right;
    TreeNode(String s, TreeNode llink, TreeNode rlink){
        info = s; left = llink; right = rlink;
    }
}
```

Printing a search tree in order

- When is root printed?
 - After left subtree, before right subtree.

```java
void visit(TreeNode t) {
    if (t != null) {
        visit(t.left);
        System.out.println(t.info);
        visit(t.right);
    }
}
```

- Inorder traversal
Tree traversals
- Different traversals useful in different contexts
 - Inorder prints search tree in order
 - Visit left-subtree, process root, visit right-subtree
 - Preorder useful for reading/writing trees
 - Process root, visit left-subtree, visit right-subtree
 - Postorder useful for destroying trees
 - Visit left-subtree, visit right-subtree, process root

Tree exercises
1. Build a tree
 - People standing up are nodes that are currently in the tree
 - Point at a sitting down person to make them your child
 - Is it a binary tree? Is it a BST?
 - Traversals, height, deepest leaf?
2. How many different binary search trees are there with specified elements?
 - E.g. given elements \{90, 13, 2, 3\}, how many possible legal BSTs are there?
3. Convert a binary search tree to a doubly linked list in \(O(n)\) time without creating any new nodes.

Insertion and Find? Complexity?
- How do we search for a value in a tree, starting at root?
 - Can do this both iteratively and recursively, contrast to printing which is very difficult to do iteratively
 - How is insertion similar to search?
- What is complexity of print? Of insertion?
 - Is there a worst case for trees?
 - Do we use best case? Worst case? Average case?
- How do we define worst and average cases?
 - For trees? For vectors? For linked lists? For arrays of linked-lists?

What does insertion look like?
- Simple recursive insertion into tree (accessed by root)
 - root = insert("foo", root);

```java
public TreeNode insert(TreeNode t, String s) {
    if (t == null) t = new Tree(s,null,null);
    else if (s.compareTo(t.info) <= 0)
        t.left = insert(t.left,s);
    else  t.right = insert(t.right,s);
    return t;
}
```
- Note: in each recursive call, the parameter t in the called clone is either the left or right pointer of some node in the original tree
- Why is this important?
- Why must the idiom \(t = \text{treeMethod}(t,\ldots)\) be used?
- What would removal look like?
Tree functions

- Compute height of a tree, what is complexity?

  ```java
  int height(Tree root)
  {
      if (root == null) return 0;
      else {
          return 1 + Math.max(height(root.left),
                              height(root.right));
      }
  }
  ```

- Modify function to compute number of nodes in a tree, does complexity change?
 - What about computing number of leaf nodes?

Balanced Trees and Complexity

- A tree is height-balanced if
 - Left and right subtrees are height-balanced
 - Left and right heights differ by at most one

  ```java
  boolean isBalanced(Tree root)
  {
      if (root == null) return true;
      return isBalanced(root.left) && isBalanced(root.right) &&
             Math.abs(height(root.left) - height(root.right)) <= 1;
  }
  ```

Rotations and balanced trees

- Height-balanced trees
 - For every node, left and right subtree heights differ by at most 1
 - After insertion/deletion need to rebalance
 - Every operation leaves tree in a balanced state: invariant property of tree

- Find deepest node that’s unbalanced then make sure:
 - On path from root to inserted/deleted node
 - Rebalance at this unbalanced point only

What is complexity?

- Assume trees are “balanced” in analyzing complexity
 - Roughly half the nodes in each subtree
 - Leads to easier analysis

- How to develop recurrence relation?
 - What is $T(n)$?
 - What other work is done?

- How to solve recurrence relation
 - Plug, expand, plug, expand, find pattern
 - A real proof requires induction to verify correctness
Balanced trees we won't study

- B-trees are used when data is both in memory and on disk
 - File systems, really large data sets
 - Rebalancing guarantees good performance both asymptotically and in practice. Differences between cache, memory, disk are important

- Splay trees rebalance during insertion and during search, nodes accessed often more closer to root
 - Other nodes can move further from root, consequences?
 - Performance for some nodes gets better, for others ...
 - No guarantee running time for a single operation, but guaranteed good performance for a sequence of operations, this is good amortized cost (vector push_back)

Balanced trees we will study

- Both kinds have worst-case O(log n) time for tree operations
- AVL (Adel’son-Velskii and Landis), 1962
 - Nodes are “height-balanced”, subtree heights differ by 1
 - Rebalancing requires per-node bookkeeping of height

- Red-black tree uses same rotations, but can rebalance in one pass, contrast to AVL tree
 - In AVL case, insert, calculate balance factors, rebalance
 - In Red-black tree can rebalance on the way down, code is more complex, but doable
 - Standard java.util.TreeMap/TreeSet use red-black

Rotation to rebalance

When a node N (root) is unbalanced height differs by 2 (must be more than one)
- Change N.left.left
 - doLeft
- Change N.left.right
 - doLeftRight
- Change N.right.left
 - doRightLeft
- Change N.right.right
 - doRight

First/last cases are symmetric
- Middle cases require two rotations
 - First of the two puts tree into doLeft or doRight

Rotation up close (doLeft)

Why is this called doLeft?
- N will no longer be root, new value in left.left subtree
- Left child becomes new root
- Rotation isn’t “to the left”, but rather “brings left child up”
- doLeftChildRotate?

Node doLeft(Node root)
{
 Node newRoot = root.left;
 root.left = newRoot.right;
 newRoot.right = root;
 return newRoot;
}
Rotation to rebalance

Suppose we add a new node in right subtree of left child of root
 - Single rotation can’t fix
 - Need to rotate twice
First stage is shown at bottom
 - Rotate blue node right
 - (its right child takes its place)
 - This is left child of unbalanced

Node doRight(Node root)
{
 Node newRoot = root.right;
 root.right = newRoot.left;
 newRoot.left = root;
 return newRoot;
}

Double rotation complete

- Calculate where to rotate and what case, do the rotations

Node doRight(Node root)
{
 Node newRoot = root.right;
 root.right = newRoot.left;
 newRoot.left = root;
 return newRoot;
}

Node doLeft(Node root)
{
 Node newRoot = root.left;
 root.left = newRoot.right;
 newRoot.right = root;
 return newRoot;
}

AVL tree practice

- Insert into AVL tree:
 - 18 10 16 12 6 3 8 13 14
 - After adding 16: doLeftRight
 - After 3, doLeft on 16

AVL practice: continued, and finished

- After adding 13, ok
- After adding 14, not ok
 - doRight at 12
Trie: efficient search of words/suffixes

- A trie (from retrieval, but pronounced “try”) supports
 - Insertion: a word into the trie (delete and look up)
 - These operations are $O(\text{size of string})$ regardless of how many strings are stored in the trie! Guaranteed!

- In some ways a trie is like a 128 (or 26 or alphabet-size) tree, one branch/edge for each character/letter
 - Node stores branches to other nodes
 - Node stores whether it ends the string from root to it

- Extremely useful in DNA/string processing
 - monkeys and typewriter simulation which is similar to some methods used in Natural Language understanding (n-gram methods)

Scoreboard

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Insertion</th>
<th>Deletion</th>
<th>Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Vector/array</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted vector/array</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linked list</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hash Maps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary search tree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVL tree</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- What else might we want to do with a data structure?

Trie picture and code (see trie.cpp)

- To add string
 - Start at root, for each char create node as needed, go down tree, mark last node
- To find string
 - Start at root, follow links
 - If NULL, not found
 - Check word flag at end
- To print all nodes
 - Visit every node, build string as nodes traversed
- What about union and intersection?
 - Indicates word ends here

Boggle: Tries, backtracking, structure

Find words on 4x4 grid

- Adjacent letters:
 - $\leftarrow \rightarrow \uparrow \downarrow \left \rightarrow \uparrow \left \rightarrow \downarrow$
 - No re-use in same word

Two approaches to find all words

- Try to form every word on board
 - Look up prefix as you go
 - Trie is useful for prefixes
- Look up every word in dictionary
 - For each word: on board?
- ZEAL and SMILES