CompSci 100e
Program Design and Analysis II

March 29, 2011
Prof. Rodger

CompSci 100e, Spring 2011

Announcements

• One APT next week – BSTCount
 – Will do in class
• Written Assignment lists/trees due March 31
• New assignment Boggle due April 7
 – Will do part of it in lab (last time, and next lab)
• Today
 – More on trees and analysis with trees
 – Recurrence relations

CompSci 100e, Spring 2011

More on Trees

• Focus on binary trees
 – Includes binary search trees
• Process tree: root (subtree) (subtree)
• Analyze recursive tree functions
 • Recurrence relation

Review: Printing a search tree in order

• When is root printed?
 – After left subtree, before right subtree.

```java
void visit(TreeNode t) {
    if (t != null) {
        visit(t.left);
        System.out.println(t.info);
        visit(t.right);
    }
}
```

• Inorder traversal
• How long for n nodes?
 – O(n)?
Tree functions

- Compute height of a tree, what is complexity?

  ```java
  int height(Tree root) {
    if (root == null) return 0;
    else {
      return 1 + Math.max(height(root.left),
                           height(root.right));
    }
  }
  ```

- Modify function to compute number of nodes in a tree, does complexity change?
 - What about computing number of leaf nodes?

What is complexity?

- Consider worst case? What does the tree look like?
- Consider average case? Assume trees are “balanced” in analyzing complexity
 - Roughly half the nodes in each subtree
 - Leads to easier analysis

- How to develop recurrence relation?
 - What is T(n)?
 - What other work is done?

- How to solve recurrence relation – formula for recursion
 - Plug, expand, plug, expand, find pattern
 - A real proof requires induction to verify correctness

Balanced Trees and Complexity

- A tree is height-balanced if
 - Left and right subtrees are height-balanced
 - Left and right heights differ by at most one

  ```java
  boolean isBalanced(Tree root) {
    if (root == null) return true;
    return isBalanced(root.left) && isBalanced(root.right) &&
           Math.abs(height(root.left) - height(root.right)) <= 1;
  }
  ```

Solving Recurrence Relation

- Recurrence relation is a formula that models how much time the method takes.
- T(n) – the time it takes to solve a problem of size n
- Basis – smallest case you know how to solve, such as n=0 or n=1

- If two recursive calls formula might be:
 - T(n) = T(smaller problem) + T(smaller problem) + work to put answer together...

- On the right side, replace T(smaller) by plugging it in to the formula
Solving Recurrence Relation (cont)

- Continue replacing the $T(\text{smaller})$ values until you see a pattern – use k for the pattern
- Then solve for k with respect to N to get a basis case that has a constant value – this removes the T term from the right hand side of the equation and you are left with $T(N) = \text{to terms of } N$ and can easily compute big-Oh

What is average big-Oh for height?

- Write a recurrence relation
 - $T(0) =$
 - $T(1) =$
 - $T(n) =$

What is worst case big-Oh for height?

- Write a recurrence relation
 - $T(0) =$
 - $T(1) =$
 - $T(n) =$

What is average case big-Oh for is-balanced?

- Write a recurrence relation
 - $T(1) =$
 - $T(n) =$
Recognizing Recurrences

- Solve once, re-use in new contexts
 - T must be explicitly identified
 - n must be some measure of size of input/parameter
 - T(n) is for quicksort to run on an n-element array

\[\begin{align*}
T(n) &= T(n/2) + O(1) \\
T(n) &= T(n-1) + O(1) \\
T(n) &= 2T(n/2) + O(1) \\
T(n) &= 2T(n/2) + O(n) \\
T(n) &= T(n-1) + O(n)
\end{align*}\]

- Remember the algorithm, re-derive complexity

Recurrences

- If \(T(n) = T(n-1) + O(1) \)... where do we see this?
 \[T(n) = T(n-1) + O(1) \]
 \[\text{true for all } X \text{ so, } T(n-1) = T(n-2) + O(1) \]
 \[T(n) = [T(n-2) + 1] + 1 = T(n-2) + 2 \]
 \[= [T(n-3) + 1] + 2 = T(n-3) + 3 \]

- True for 1, 2, so eureka! We see a pattern
 \[T(n) = T(n-k) + k, \text{ true for all } k, \text{ let } n=k \]
 \[T(n) = T(n-n) + n = T(0) + n = n \]

- We could solve, we could prove, or remember!

BSTCount APT

- Given values for a binary search tree, how many unique trees are there?
 - 1 value = one tree
 - 2 values = two trees
 - 3 values = 5 trees
 - N values = ? trees

- Will memoize help?