left rotate x
Announcements

• Lab tomorrow
 – Focus on BoggleScore APT

• What is due:
 – Huffman (extended til Monday night, Apr 25)
 – APTS due Tue, April 26
 – Extra credit assignments due Wed, April 27

• Graphs and Red-Black trees today
 – Classwork 16
 – Internet APT – work through parts in class
More on trees

• General tree
Balanced Trees

- Splay trees
- AVL trees
- Red-black trees
- B-trees
Balanced trees, we’ll look at red-black

- Both kinds have worst-case $O(\log n)$ time for tree operations
- AVL (Adel’son-Velskii and Landis), 1962
 - Nodes are “height-balanced”, subtree heights differ by 1
 - Rebalancing requires per-node bookkeeping of height
 - http://people.ksp.sk/~kuko/bak/

- Red-black tree uses same rotations, but can rebalance in one pass, contrast to AVL tree
 - In AVL case, insert, calculate balance factors, rebalance
 - In Red-black tree can rebalance on the way down, code is more complex, but doable
 - Standard java.util.TreeMap/TreeSet use red-black

CompSci 100e, Spring 2011
Red-Black Tree

• Invented by Bayr – (though called them something else)
• Robert Tarjan (Turing Award Winner) – noticed the rotations were O(1)
• Type of balanced tree – uses color scheme, recoloring and rotations to balance
Red-Black Tree

• Is a Binary Search Tree
• Properties:
 – Every node is red or black
 – The root is black
 – If a node is red, then its children are black
 – Every leaf is a null node and black (external node)
 – Every simple path from a node to a descendant leaf contains the same number of black nodes.
Example red-black tree

- In the figure, black nodes are shaded and red nodes are non-shaded
- Check properties
Example

• The five properties ensure that no path is more than twice as long as any other path

• Def. The *height* \((h)\) of a node is the length of the longest path from the node (downward) to a leaf (including external nodes).

• Def. The *black height* \((bh)\) of a node \(x\) is the number of black nodes on any path from \(x\) (not including \(x\)) to a leaf

• Examples: \(h(19)\)? \(bh(19)\)? \(h(8)\)? \(bh(8)\)?
Height of Red-Black Tree

• Lemma: A red-black tree with n internal nodes has height at most $2 \log (n+1)$

• Operations:
 – Time for search for x:
 – Time for min:
 – Time for list inorder:
Rotations

- We want to perform insertions and deletions in $O(\log n)$ time. Adding or deleting a node may disrupt one of its properties, so in addition to some recolorings, we may also have to restructure the tree by performing a rotation (change some pointers).

- Note the inorder traversal in both is: abcde
Right Rotate

• Note the rotations change the pointer structure while preserving the inorder property.

Right rotate x

```
      d
     / \  x
    y   e
   /   /
  b    d
   \   /
    a  c
```

```
      b
     / \ y
    a   e
   /
  d   x
   /
  c  e
```
Example of rotation
Insertion

• Insert node as RED using a binary search tree
 insert
 – Means insert as a Red leaf with two black NULL nodes
• Then fix-up so that properties still hold
 – Recoloring and/or 1-2 rotations
• Several cases to consider
Cases for Insert

case 1

case 2

case 3
Insertion – Case 1 – How to Fix

- Case 1 – sibling of parent of x (called y) is red

 To fix: recolor three nodes, then fix up new “x”
Insertion – Case 2 How to Fix

- Sibling of parent of x (call y) is black, x right child

\[
\begin{array}{c}
A \quad B \\
\downarrow \quad \downarrow \\
b \quad c \\
\end{array}
\quad
d \quad e
\quad
\begin{array}{c}
C \quad D \\
\downarrow \quad \downarrow \\
x \quad y \\
\end{array}
\]

\[
\begin{array}{c}
B \quad D \\
\downarrow \quad \downarrow \\
x \quad y \\
\end{array}
\quad
\begin{array}{c}
C \quad D \\
\downarrow \quad \downarrow \\
x \quad y \\
\end{array}
\]

Then case 3

- To fix: set x to parent of x and left rotate x, then it becomes a case 3
Insertion – Case 3 – How to Fix

• Case 3 – sibling of parent of x (call y) is black, x left child

• To fix: two recolorings and one right rotate of grandparent of x
Example of Insert 4 w/ double rotation

Case 1

Case 2

Case 3
Analysis – Red Black Tree

• Insert
• Deletion