SQL: Recursion

CPS 116
Introduction to Database Systems

Announcements

- Homework #2 due today at midnight (Sep. 28)
 - Sample solution will be available on Thursday
- Project milestone #1 due on Thursday
- Midterm next Thursday

A motivating example

- Example: find Bart’s ancestors
- "Ancestor" has a recursive definition
 - X is Y’s ancestor if
 - X is Y’s parent, or
 - X is Z’s ancestor and Z is Y’s ancestor
Recursion in SQL

- SQL2 had no recursion
 - You can find Bart’s parents, grandparents, great grandparents, etc.
 - But you cannot find all his ancestors with a single query

- SQL3 introduces recursion
 - WITH clause
 - Implemented in DB2 (called common table expressions)

Ancestor query in SQL3

```
WITH Ancestor(anc, desc) AS
  ((SELECT parent, child FROM Parent)
   UNION
   (SELECT a1.anc, a2.desc
    FROM Ancestor a1, Ancestor a2
    WHERE a1.desc = a2.anc))
SELECT anc
FROM Ancestor
WHERE desc = 'Bart';
```

How do we compute such a recursive query?

Fixed point of a function

- If \(f: T \to T \) is a function from a type \(T \) to itself, a fixed point of \(f \) is a value \(x \) such that \(f(x) = x \)
- Example: What is the fixed point of \(f(x) = x / 2 \)?
 - 0, because \(f(0) = 0 / 2 = 0 \)

To compute a fixed point of \(f \)

- Start with a “seed”: \(x \leftarrow x_0 \)
- Compute \(f(x) \)
 - If \(f(x) = x \), stop; \(x \) is fixed point of \(f \)
 - Otherwise, \(x \leftarrow f(x) \); repeat

Example: compute the fixed point of \(f(x) = x / 2 \)

- With seed 1: 1, 1/2, 1/4, 1/8, 1/16, ... → 0
Fixed point of a query

- A query q is just a function that maps an input table to an output table, so a fixed point of q is a table T such that $q(T) = T$.
- To compute fixed point of q:
 - Start with an empty table: $T \leftarrow \emptyset$.
 - Evaluate q over T.
 - If the result is identical to T, stop; T is a fixed point.
 - Otherwise, let T be the new result; repeat.

q Starting from \emptyset produces the unique minimal fixed point (assuming q is monotone).

Finding ancestors

WITH Ancestor(anc, desc) AS
(SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc FROM Ancestor a1, Ancestor a2 WHERE a1.desc = a2.anc)

Think of it as $\text{Ancestor} = q(\text{Ancestor})$.

Parent (parent, child)

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
<td>Bart</td>
</tr>
<tr>
<td>Homer</td>
<td>Lisa</td>
</tr>
<tr>
<td>Marge</td>
<td>Bart</td>
</tr>
<tr>
<td>Marge</td>
<td>Lisa</td>
</tr>
<tr>
<td>Abe</td>
<td>Homer</td>
</tr>
<tr>
<td>Ape</td>
<td>Abe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>anc</th>
<th>desc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
<td>Bart</td>
</tr>
<tr>
<td>Homer</td>
<td>Lisa</td>
</tr>
<tr>
<td>Marge</td>
<td>Bart</td>
</tr>
<tr>
<td>Marge</td>
<td>Lisa</td>
</tr>
<tr>
<td>Abe</td>
<td>Homer</td>
</tr>
<tr>
<td>Ape</td>
<td>Abe</td>
</tr>
</tbody>
</table>

Intuition behind fixed-point iteration

- Initially, we know nothing about ancestor-descendent relationships.
- In the first step, we deduce that parents and children form ancestor-descendent relationships.
- In each subsequent steps, we use the facts deduced in previous steps to get more ancestor-descendent relationships.
- We stop when no new facts can be proven.
Linear recursion

- With linear recursion, a recursive definition can make only one reference to itself
- Non-linear:
  ```sql
  WITH Ancestor(anc, desc) AS
  (SELECT parent, child FROM Parent)
  UNION
  (SELECT a1.anc, a2.desc
   FROM Ancestor a1, Ancestor a2
   WHERE a1.desc = a2.anc)
  
  Linear:
  ```

Linear vs. non-linear recursion

- Linear recursion is easier to implement
 - For linear recursion, just keep joining newly generated `Ancestor` rows with `Parent`
 - For non-linear recursion, need to join newly generated `Ancestor` rows with all existing `Ancestor` rows
- Non-linear recursion may take fewer steps to converge
 - Example: `a → b → c → d → e`
 - Linear recursion takes 4 steps
 - Non-linear recursion takes 3 steps

Mutual recursion example

- Table `Natural (n)` contains 1, 2, ..., 100
- Which numbers are even/odd?
 - An odd number plus 1 is an even number
 - An even number plus 1 is an odd number
 - 1 is an odd number
  ```sql
  WITH Even(n) AS
  (SELECT n FROM Natural
   WHERE n = ANY(SELECT n+1 FROM Odd)),
  Odd(n) AS
  ((SELECT n FROM Natural WHERE n = 1)
   UNION
   (SELECT n FROM Natural
    WHERE n = ANY(SELECT n+1 FROM Even)))
  ```
Operational semantics of WITH

- **WITH** R_1 AS Q_1, ..., R_n AS Q_n

 * Q_1, ..., Q_n may refer to R_1, ..., R_n

- Operational semantics

 1. $R_i \leftarrow \emptyset$, ..., $R_n \leftarrow \emptyset$
 2. Evaluate Q_i, ..., Q_n using the current contents of R_1, ..., R_n:

 $R_i^{\text{new}} \leftarrow Q_i$
 $R_i^{\text{new}} \leftarrow Q_i$

 3. If $R_i^{\text{new}} \neq R_i$ for any i

 3.1. $R_1 \leftarrow R_1^{\text{new}},$..., $R_n \leftarrow R_n^{\text{new}}$
 3.2. Go to 2.

 4. Compute Q using the current contents of R_1, ..., R_n and output the result.

Computing mutual recursion

WITH Even(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),
Odd(n) AS
(SELECT n FROM Natural WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even))

- Even = \emptyset, Odd = \emptyset
- Even = $\{2\}$, Odd = $\{1\}$
- Even = $\{2, 4\}$, Odd = $\{1, 3\}$
- Even = $\{2, 4\}$, Odd = $\{1, 3, 5\}$
- ...

Fixed points are not unique

WITH Ancestor(anc, desc) AS
(SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc)

- There may be many other fixed points
- But if q is monotone, then all these fixed points must contain the fixed point we computed from fixed-point iteration starting with \emptyset

 - Thus the unique minimal fixed point is the "natural" answer to the query

Note that the bogus tuple reinforces itself!
Mixing negation with recursion

- If \(q \) is non-monotone
 - The fixed-point iteration may flip-flop and never converge
 - There could be multiple minimal fixed points—so which one is the right answer?

- Example: reward students with GPA higher than 3.9
 - Those not on the Dean’s List should get a scholarship
 - Those without scholarships should be on the Dean’s List
 - WITH Scholarship\(\left\{\text{SID}\right\}\) AS
 \[
 \text{(SELECT SID FROM Student WHERE GPA > 3.9}
 \text{AND SID NOT IN (SELECT SID FROM DeansList)),}
 \]
 - DeansList\(\left\{\text{SID}\right\}\) AS
 \[
 \text{(SELECT SID FROM Student WHERE GPA > 3.9}
 \text{AND SID NOT IN (SELECT SID FROM Scholarship))}
 \]

Fixed-point iteration does not converge

WITH Scholarship\(\left\{\text{SID}\right\}\) AS
(\text{SELECT SID FROM Student WHERE GPA > 3.9}
\text{AND SID NOT IN (SELECT SID FROM DeansList)},)
DeansList\(\left\{\text{SID}\right\}\) AS
(\text{SELECT SID FROM Student WHERE GPA > 3.9}
\text{AND SID NOT IN (SELECT SID FROM Scholarship))}

<table>
<thead>
<tr>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
</tr>
<tr>
<td>857</td>
</tr>
<tr>
<td>999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scholarship</th>
<th>DeansList</th>
</tr>
</thead>
<tbody>
<tr>
<td>857</td>
<td>999</td>
</tr>
</tbody>
</table>

Multiple minimal fixed points

WITH Scholarship\(\left\{\text{SID}\right\}\) AS
(\text{SELECT SID FROM Student WHERE GPA > 3.9}
\text{AND SID NOT IN (SELECT SID FROM DeansList)},)
DeansList\(\left\{\text{SID}\right\}\) AS
(\text{SELECT SID FROM Student WHERE GPA > 3.9}
\text{AND SID NOT IN (SELECT SID FROM Scholarship))}

<table>
<thead>
<tr>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
</tr>
<tr>
<td>857</td>
</tr>
<tr>
<td>999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scholarship</th>
<th>DeansList</th>
</tr>
</thead>
<tbody>
<tr>
<td>857</td>
<td>999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scholarship</th>
<th>DeansList</th>
</tr>
</thead>
<tbody>
<tr>
<td>999</td>
<td>857</td>
</tr>
</tbody>
</table>
Legal mix of negation and recursion

- Construct a dependency graph
 - One node for each table defined in \texttt{WITH}
 - A directed edge $R \rightarrow S$ if R is defined in terms of S
 - Label the directed edge "\textasciitilde" if the query defining R is not monotone with respect to S
- Legal SQL-3 recursion: no cycle containing a "\textasciitilde" edge
 - Called stratified negation
- Bad mix: a cycle with at least one edge labeled "\textasciitilde"

\begin{center}
\textbf{Ancestor} \quad \textbf{Scholarship} \quad \textbf{DeanList}
\end{center}

\textbf{Legal!}

\begin{center}
\textbf{Illegal!}
\end{center}

Stratified negation example

- Find pairs of persons with no common ancestors

 \begin{verbatim}
 WITH Ancestor(anc, desc) AS
 ((SELECT parent, child FROM Parent) UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc)),
 Person(person) AS
 ((SELECT parent FROM Parent) UNION
 (SELECT child FROM Parent)),
 NoCommonAnc(person1, person2) AS
 ((SELECT p1.person, p2.person
 FROM Person p1, Person p2
 WHERE p1.person <> p2.person)
 EXCEPT
 (SELECT a1.desc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.anc = a2.anc)),
 SELECT * FROM NoCommonAnc;
 \end{verbatim}

Evaluating stratified negation

- The stratum of a node R is the maximum number of "\textasciitilde" edges on any path from R in the dependency graph
 - \texttt{Ancestor}: stratum 0
 - \texttt{Person}: stratum 0
 - \texttt{NoCommonAnc}: stratum 1
- Evaluation strategy
 - Compute tables lowest-stratum first
 - For each stratum, use fixed-point iteration on all nodes in that stratum
 - Stratum 0: \texttt{Ancestor} and \texttt{Person}
 - Stratum 1: \texttt{NoCommonAnc}
- Intuitively, there is no negation within each stratum
Summary

- **SQL3 WITH** recursive queries
- Solution to a recursive query (with no negation): unique minimal fixed point
- Computing unique minimal fixed point: fixed-point iteration starting from \emptyset
- Mixing negation and recursion is tricky
 - Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
 - Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)