Indexing

CPS 116
Introduction to Database Systems

Announcements (November 7)
- Project milestone #2 due this Thursday
- Homework #3 sample solution will be available on Thursday

Basics
- Given a value, locate the record(s) with this value
 SELECT * FROM R WHERE A = value;
 SELECT * FROM R, S WHERE R.A = S.B;
- Other search criteria, e.g.
 * Range search
 SELECT * FROM R WHERE A > value;
 * Keyword search
 database indexing Search
Dense and sparse indexes

- **Dense**: one index entry for each search key value
- **Sparse**: one index entry for each block

- Records must be clustered according to the search key

Dense index on name

Sparse index on SID

Dense versus sparse indexes

- Index size
- Requirement on records
- Lookup
- Update

Primary and secondary indexes

- **Primary index**
 - Created for the primary key of a table
 - Records are usually clustered according to the primary key
 - Can be sparse
- **Secondary index**
 - Usually dense
- **SQL**
 - PRIMARY KEY declaration automatically creates a primary index,
 UNIQUE key automatically creates a secondary index
 - Additional secondary index can be created on non-key attribute(s)
 CREATE INDEX StudentGPAIndex ON Student(GPA);
ISAM

What if an index is still too big?
- Put a another (sparse) index on top of that!

ISAM (Index Sequential Access Method), more or less

Example: look up 197

Updates with ISAM

Example: insert 107
Example: delete 129

Overflow chains and empty data blocks degrade performance
- Worst case:

B⁺-tree

A hierarchy of intervals
- Balanced (more or less): good performance guarantee
- Disk-based: one node per block; large fan-out

Max fan-out: 4
Sample B^+-tree nodes

Max fan-out: 4

Non-leaf

$100 \leq k < 120$
$120 \leq k < 150$
$150 \leq k < 180$
$180 \leq k$

Leaf

$100 \leq k < 120$
$120 \leq k < 150$
$150 \leq k < 180$
$180 \leq k$

\to keys

\to keys

\to keys

\to keys

\to next leaf node in sequence

\to records with these k values;
or, store records directly in leaves

B^+-tree balancing properties

\diamond Height constraint: all leaves at the same lowest level
\diamond Fan-out constraint: all nodes at least half full (except root)

<table>
<thead>
<tr>
<th></th>
<th>Max # pointers</th>
<th>Max # keys</th>
<th>Min # active pointers</th>
<th>Min # keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-leaf</td>
<td>f</td>
<td>$f - 1$</td>
<td>$\lceil f/2 \rceil$</td>
<td>$\lceil f/2 \rceil - 1$</td>
</tr>
<tr>
<td>Root</td>
<td>f</td>
<td>$f - 1$</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Leaf</td>
<td>f</td>
<td>$f - 1$</td>
<td>$\lceil f/2 \rceil$</td>
<td>$\lceil f/2 \rceil$</td>
</tr>
</tbody>
</table>

Lookups

SELECT * FROM R WHERE $k = 179$
SELECT * FROM R WHERE $k = 32$
Range query

```
SELECT * FROM R WHERE k > 32 AND k < 179;
```

Max fan-out: 4

Look up 32…

And follow next-leaf pointers

Insertion

* Insert a record with search key value 32

Max fan-out: 4

Look up where the inserted key should go…

And insert it right there

Another insertion example

* Insert a record with search key value 152

Max fan-out: 4

Oops, node is already full!
Node splitting

Max fan-out: 4

Yikes, this node is also already full!

More node splitting

Max fan-out: 4

* In the worst case, node splitting can “propagate” all the way up to the root of the tree (not illustrated here)
 * Splitting the root introduces a new root of fan-out 2 and causes the tree to grow “up” by one level

Deletion

* Delete a record with search key value 130

Max fan-out: 4

If a sibling has more than enough keys, steal one!

And delete it:

Oops, node is too empty!
Stealing from a sibling

```
Max fan-out: 4
Remember to fix the key in the least common ancestor
```

Another deletion example

- Delete a record with search key value 179

```
Max fan-out: 4
```

```
Cannot steal from siblings
Then coalesce (merge) with a sibling!
```

Coalescing

```
Max fan-out: 4
```

```
Remember to delete the appropriate key from parent
```

- Deletion can “propagate” all the way up to the root of the tree (not illustrated here)
 - When the root becomes empty, the tree “shrinks” by one level
Performance analysis

- How many I/O’s are required for each operation?
 - \(h \), the height of the tree (more or less)
 - Plus one or two to manipulate actual records
 - Plus \(O(h) \) for reorganization (should be very rare if \(f \) is large)
 - Minus one if we cache the root in memory

- How big is \(h \)?
 - Roughly \(\log_{\text{fan-out}} N \), where \(N \) is the number of records
 - \(B^+ \)-tree properties guarantee that fan-out is least \(f/2 \) for all non-root nodes
 - Fan-out is typically large (in hundreds)—many keys and pointers can fit into one block
 - A 4-level \(B^+ \)-tree is enough for typical tables

B^+\-tree in practice

- Complex reorganization for deletion often is not implemented (e.g., Oracle, Informix)
 - Leave nodes less than half full and periodically reorganize
- Most commercial DBMS use \(B^+ \)-tree instead of hashing-based indexes because \(B^+ \)-tree handles range queries

The Halloween Problem

- Story from the early days of System R…
 - UPDATE Payroll
 - SET salary = salary * 1.1
 - WHERE salary >= 100000;
 - There is a \(B^+ \)-tree index on Payroll(salary)
 - The update never stopped (why?)
- Solutions?
B⁺-tree versus ISAM

- ISAM is more static; B⁺-tree is more dynamic
- ISAM is more compact (at least initially)
 - Fewer levels and I/O's than B⁺-tree
- Overtime, ISAM may not be balanced
 - Cannot provide guaranteed performance as B⁺-tree does

B⁺-tree versus B-tree

- B-tree: why not store records (or record pointers) in non-leaf nodes?
 - These records can be accessed with fewer I/O's
- Problems?

Beyond ISAM, B-, and B⁺-trees

- Other tree-based indexes: R-trees and variants, GiST, etc.
- Hashing-based indexes: extensible hashing, linear hashing, etc.
- Text indexes: inverted-list index, suffix arrays, etc.
- Other tricks: bitmap index, bit-sliced index, etc.