Query Optimization

CPS 116
Introduction to Database Systems

Announcements (November 20)

- Homework #4 (last one and short) assigned today
 - Due next Thursday

Query optimization

- One logical plan → “best” physical plan
- Questions
 - How to enumerate possible plans
 - How to estimate costs
 - How to pick the “best” one
- Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Any of these will do

1 second 1 minute 1 hour
Plan enumeration in relational algebra

- Apply relational algebra equivalences
- Join reordering: \(\times \) and \(\bowtie \) are associative and commutative (except column ordering, but that is unimportant)

More relational algebra equivalences

- Convert \(\sigma_f \times \) to/from \(\bowtie_g \): \(\sigma_f(R \times S) = R \bowtie_g S \)
- Merge/split \(\sigma': \sigma_p_{R} R = \sigma_{p_{R} \bowtie \sigma_{p_{S} S}} \)
- Merge/split \(\pi': \pi_l(R_{L}) = \pi_{L_{1} R} \), where \(L_{1} \subseteq L_{2} \)
- Push down/pull up \(\sigma' \):
 \[\sigma_{p_{R} \bowtie \sigma_{p_{S} S}}(R \bowtie_g S) = (\sigma_{p_{R}} R) \bowtie_g (\sigma_{p_{S}} S), \]
 where
 - \(p_{R} \) is a predicate involving only \(R \) columns
 - \(p_{S} \) is a predicate involving only \(S \) columns
 - \(p \) and \(p' \) are predicates involving both \(R \) and \(S \) columns
- Push down \(\pi' \): \(\pi_{L} \sigma_{p} R = \pi_{L_{1}} \sigma_{p_{L_{1} R}} \), where
 - \(L_{1} \) is the set of columns referenced by \(p \) that are not in \(L \)
- Many more (seemingly trivial) equivalences...
 - Can be systematically used to transform a plan to new ones

Relational query rewrite example

Push down \(\sigma \):

Convert \(\sigma_f \times \) to \(\bowtie_g \):

More relational algebra equivalences
Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
 - Why?
 - Why not?
- Join smaller relations first, and avoid cross product
 - Why?
 - Why not?
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

SQL query rewrite

- More complicated—subqueries and views divide a query into nested “blocks”
 - Processing each block separately forces particular join methods and join order
 - Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins
 - We can just deal with select-project-join queries
 - Where the clean rules of relational algebra apply

SQL query rewrite example

- SELECT name
 FROM Student
 WHERE SID = ANY (SELECT SID FROM Enroll);
- SELECT name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID;
Dealing with correlated subqueries

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- SELECT CID
 FROM Course, (SELECT CID, COUNT(*) AS cnt
 FROM Enroll GROUP BY CID) t
 WHERE t.CID = Course.CID AND min_enroll > t.cnt
 AND title LIKE 'CPS%';

“Magic” decorrelation

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- CREATE VIEW Supp_Course AS
 SELECT DISTINCT CID FROM Course WHERE title LIKE 'CPS%';
- CREATE VIEW Magic AS
 SELECT DISTINCT CID FROM Supp_Course;
- CREATE VIEW DS AS
 (SELECT Enroll.CID, COUNT(*) AS cnt
 FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
 GROUP BY Enroll.CID) UNION
 (SELECT Magic.CID, 0 AS cnt
 FROM Magic WHERE Magic.CID NOT IN (SELECT CID FROM Enroll));
- SELECT Supp_Course.CID FROM Supp_Course, DS
 WHERE Supp_Course.CID = DS.CID
 AND min_enroll > DS.cnt;

Heuristics- vs. cost-based optimization

- Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
 - Rewrite logical plan to combine “blocks” as much as possible
 - Optimize query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks
Cost estimation

Physical plan example:

- PROJECT (title)
- MERGE-JOIN (GID)
- SCAN (Course)
- SORT (CID)
- MERGE-JOIN (SID)
- SORT (SID)
- SCAN (Student)
- FILTER (name = "Bart")
- SCAN (Enroll)

- We have: cost estimation for each operator
 - Example: SORT(GID) takes $2 \times B(input)$
 - But what is $B(input)$?
- We need: size of intermediate results

Selections with equality predicates

- $Q: \sigma_A = v R$
- Suppose the following information is available
 - Size of R: $|R|$
 - Number of distinct A values in R: $|\pi_A R|$
- Assumptions
 - Values of A are uniformly distributed in R
 - Values of v in Q are uniformly distributed over all $R.A$ values
- $|Q| \approx \frac{|R|}{|\pi_A R|}$
- Selectivity factor of $(A = v)$ is $1/|\pi_A R|$

Conjunctive predicates

- $Q: \sigma_A = a$ and $B = v R$
- Additional assumptions
 - $(A = a)$ and $(B = v)$ are independent
 - Counterexample: major and advisor
 - No "over"-selection
 - Counterexample: A is the key
- $|Q| \approx \frac{|R|}{(|\pi_A R| \cdot |\pi_B R|)}$
- Reduce total size by all selectivity factors
Negated and disjunctive predicates

\(Q: \sigma_{A \neq v} R \)
- \(|Q| \approx |R| \cdot (1 - \frac{1}{\pi_{A} R})\)
- Selectivity factor of \(\neg p \) is \((1 - \text{selectivity factor of } p)\)

\(Q: \sigma_{A = u \lor B = v} R \)
- \(|Q| \approx |R| \cdot \frac{1}{\pi_{A} R} + \frac{1}{\pi_{B} R}|?)
- \(|Q| \approx \)

Range predicates

\(Q: \sigma_{A > v} R \)
- Not enough information!
 - Just pick, say, \(|Q| \approx |R| \cdot 1/3\)
- With more information
 - Largest \(R.A \) value: high(\(R.A \))
 - Smallest \(R.A \) value: low(\(R.A \))
 - \(|Q| \approx |R| \cdot \frac{(\text{high}(R.A) - v)}{\text{high}(R.A) - \text{low}(R.A)}|\)
 - In practice: sometimes the second highest and lowest are used instead

Two-way equi-join

\(Q: R(A, B) \bowtie S(A, C) \)
- Assumption: containment of value sets
 - Every tuple in the “smaller” relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if \(|\pi_{A} R| \leq |\pi_{A} S|\) then \(\pi_{A} R \subseteq \pi_{A} S\)
 - Certainly not true in general
 - But holds in the common case of foreign key joins
- \(|Q| \approx |R| \cdot |S| / \max(|\pi_{A} R|, |\pi_{A} S|)\)
- Selectivity factor of \(R.A = S.A \) is \(\frac{1}{\max(|\pi_{A} R|, |\pi_{A} S|)}\)
Multiway equi-join

\[Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \]

What is the number of distinct \(C \) values in the join of \(R \) and \(S \)?

Assumption: preservation of value sets
- A non-join attribute does not lose values from its set of possible values
- That is, if \(A \) is in \(R \) but not \(S \), then \(\pi_A (R \bowtie S) = \pi_A R \)
- Certainly not true in general
- But holds in the common case of foreign key joins (for value sets from the referencing table)

Multiway equi-join (cont’d)

\[Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \]

Start with the product of relation sizes
- \(|R| \cdot |S| \cdot |T|\)

Reduce the total size by the selectivity factor of each join predicate
- \(R.B = S.B: 1/\max(|\pi_B R|, |\pi_B S|) \)
- \(S.C = T.C: 1/\max(|\pi_C S|, |\pi_C T|) \)
- \(|Q| \approx (|R| \cdot |S| \cdot |T|)/ (\max(|\pi_B R|, |\pi_B S|) \cdot \max(|\pi_C S|, |\pi_C T|)) \)

Cost estimation: summary

Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)

Lots of assumptions and very rough estimation
- Accurate estimate is not needed
- Maybe okay if we overestimate or underestimate consistently
- May lead to very nasty optimizer “hints”

Not covered: better estimation using histograms
Search for the best plan

- Huge search space
- "Bushy" plan example:

 ![Image of a bushy plan]

- Just considering different join orders, there are
 \[(2n - 2)! / (n - 1)\] bushy plans for \(R_1 \bowtie \cdots \bowtie R_n\)
 - 30240 for \(n = 6\)

- And there are more if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators

Left-deep plans

- Heuristic: consider only "left-deep" plans, in which only the
 left child can be a join
 - Tend to be better than plans of other shapes, because many join
 algorithms scan inner (right) relation multiple times—you will not
 want it to be a complex subtree

- How many left-deep plans are there for \(R_1 \bowtie \cdots \bowtie R_n\)?

A greedy algorithm

- \(S_1, \ldots, S_n\)
 - Say selections have been pushed down; i.e., \(S_j = \sigma_j R_i\)
 - Start with the pair \(S_i, S_j\) with the smallest estimated size for
 \(S_i \bowtie S_j\)

- Repeat until no relation is left:
 - Pick \(S_i\) from the remaining relations such that the join of \(S_i\)
 and the current result yields an intermediate result of the
 smallest size

 ![Diagram of a greedy algorithm]
A dynamic programming approach

- Generate optimal plans bottom-up
 - Pass 1: Find the best single-table plans (for each table)
 - Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 - ...
 - Pass k: Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
 - ...
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
 - Well, not quite...

The need for “interesting order”

- Example: $R(A, B) \bowtie S(A, C) \bowtie T(A, D)$
- Best plan for $R \bowtie S$: hash join (beats sort-merge join)
- Best overall plan: sort-merge join R and S, and then sort-merge join with T
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of R and S is sorted on A
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.)!

Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan X is better than plan Y if
 - Cost of X is lower than Y
 - Interesting orders produced by X subsume those produced by Y
- Need to keep a set of optimal plans for joining every combination of k tables
 - At most one for each interesting order
Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
 - Need statistics to estimate sizes of intermediate results
 - Greedy approach
 - Dynamic programming approach