Spatial Decomposition

- Divide the space into *primitive* cells.
- Represent all cells lying in the object.

Spatial occupation enumeration
- Divide the space into identical cells arranged in a fixed regular grid structures.
- 3D Analog of 2D images.
- Cells are often cubes and are called *voxels*.
- Popular representation in volume rendering and CAT.
- High storage requirement.
Oct Trees

- Hierarchical representation.
- Requires much less space.
- Extension of 2D *quad tree*.

Quad tree:
- Recursively subdivide the plane into four squares by bisecting it in both directions.
- A square is *full, empty, partially full*.
- A partially full square is further subdivided.
- Partitioning continues until a cutoff threshold is reached.

![Quad Tree Example](image-url)
Quad Trees

- Can be represented as a 4-way tree.
- Each node v represents a square Q_v
 - If $Q_v \subseteq P$, v is black.
 - If $Q_v \cap P = \emptyset$, v is white.
 - Otherwise v is gray.
 - Gray nodes are further subdivided.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
</table>
| 2 | 3 | Quadrant Numbering

Quad Trees

CPS/1/2/4/, 2/9/6:
Computer Graphics
Data Structures
Page 3
Oct Trees

- Oct tree is a similar to quadtrees.
- Each cube is divided into eight octants.
- Useful for many operations, e.g., collision detection, ray tracing.
- Space requirement is still large. Item Sensitive to the position of the object.
- Only approximate representation for nonorthogonal objects.
Boolean Operations on Quad Trees

Object S

Object T

Union (S, T)

Intersection (S, T)
Binary Space Partition (BSP) Trees

P: Polyhedron; Normal of each face point to exterior of P

- Each interior node v is associated with a plane π_v (containing a face of P) and convex polytope Q_v.
 - π_v^+: outside halfspace bounded by π_v.
 - π_v^-: inside halfspace bounded by π_v.
- The left child w of v is associated with $Q_v \cap \pi^-$. If Q_w is monochromatic, w is a leaf.
- The right child x of v is associated with $Q_v \cap \pi^+$. If Q_z is monochromatic, w is a leaf.