- Principal Component Analysis

- high dimensional data
 \[x \in \mathbb{R}^d \quad (x_1, x_2, \ldots, x_d) \quad d \text{ large} \]

- image: \(256 \times 256 \rightarrow 256 \times 256 \times 3 \) dimensional

- text: represent each word in vocabulary as a dimension
 values in vector = # times a word appear in the document.
 dimension of the vector = # words in vocabulary

- vectors in high dimensions often have correlations/redundancy
 - Principal Component Analysis: Technique to map high dimensional data to a small # of interesting directions.

- input: \(n \) data points \(x_1, x_2, \ldots, x_n \quad x_i \in \mathbb{R}^d \)

- output: \(u_1, u_2, \ldots, u_r \in \mathbb{R}^d \) \(r \) interesting directions

 - How to tell whether a direction is interesting

 - Idea: the direction where data has largest variance.

 - First direction: \(u \)
 \[\max \frac{1}{n} \sum_{i=1}^{n} <x_i, u>^2 \quad \|u\|_2 = 1 \]

 \[\sqrt{\frac{1}{d} \sum_{i=1}^{d} (u_i)^2} \quad \text{“variance” of data in direction} \]

 \[\sim \text{“interesting” if variance is large} \]

 - Second direction: \(u_2 \)
 \[\max \frac{1}{n} \sum_{i=1}^{n} <x_i, u>^2 \quad \|u\|_2 = 1 \]
- k-th direction u_k
 \[\max_{||u||=1} \langle x_i, u \rangle^2 \]
 \[\forall j \leq k \]
 \[u_k \perp u_j \]

- Compute PCA directions

- **Power method.**
 \[A = \sum_{i=1}^{n} x_i x_i^T = \begin{bmatrix} d & \vdots \\ \vdots & d \end{bmatrix} \]
 \[d \frac{1}{d} \]

- **Recall:** eigenvalue and eigenvector
 \[A v = \lambda v \]
 v is a nonzero vector, then λ is eigenvalue, v eigenvector

- **Eigenvalue decomposition.** For any symmetric matrix A, can write
 \[A = \sum_{i=1}^{d} \lambda_i u_i u_i^T \]
 \(\{\lambda_i\} \) are eigenvalues, \(\{u_i\} \) are eigenvectors.
 \(\{u_i\} \) are orthogonal to each other.

- **Claim:** In PCA, $u_1 = v_1$, $u_2 = v_2$, ..., $u_r = v_r$.

- **Power method**

 Initialize u_0 as a random vector.

 For $i = 1$ to t

 $u^i = A u^{i-1}$

 return $u_t / ||Au^{t-1}||$

 Observe $u^1 \sim A u^0$, $u^2 \sim A(Au^0) = A^2 u^0$

 $u^t \sim A^t u^0$

 Claim: With high probability, when $t \geq \left(\frac{\log \frac{d}{\epsilon}}{\lambda_2 - \lambda_1} \right)$, then $||u^t - v|| \leq \epsilon$.

 (to be proved in next lecture)