The A* Search Algorithm

Siyang Chen
Introduction

A* (pronounced ‘A-star’) is a search algorithm that finds the shortest path between some nodes S and T in a graph.
Heuristic Functions

- Suppose we want to get to node T, and we are currently at node v. Informally, a *heuristic function* $h(v)$ is a function that ‘estimates’ how v is away from T.
Heuristic Functions

▶ Suppose we want to get to node T, and we are currently at node v. Informally, a heuristic function $h(v)$ is a function that ‘estimates’ how v is away from T.

▶ Example: Suppose I am driving from Durham to Raleigh. A heuristic function would tell me approximately how much longer I have to drive.
Admissible Heuristics

- A heuristic function is *admissible* if it never overestimates the distance to the goal.
Admissible Heuristics

A heuristic function is *admissible* if it never overestimates the distance to the goal.

Example: $h(v) = 0$ is an admissible heuristic.
A heuristic function is *admissible* if it never overestimates the distance to the goal.

Example: $h(v) = 0$ is an admissible heuristic.

Less trivial example: If our nodes are points on the plane, then the straight-line distance

$$h(v) = \sqrt{(v_x - T_x)^2 + (v_y - T_y)^2}$$

is an admissible heuristic.
Suppose two nodes \(u \) and \(v \) are connected by an edge. A heuristic function \(h \) is \textit{consistent} or \textit{monotone} if it satisfies the following:

\[
h(u) \leq e(u, v) + h(v)
\]

where \(e(u, v) \) is the edge distance from \(u \) to \(v \).
Consistent Heuristics

- Suppose two nodes u and v are connected by an edge. A heuristic function h is consistent or monotone if it satisfies the following:

$$h(u) \leq e(u, v) + h(v)$$

where $e(u, v)$ is the edge distance from u to v.

- Reasoning: If I want to reach T from u, then I can first go through v, then go to T from there. (This is very similar to the triangle inequality.)
Consistent Heuristics

▶ Suppose two nodes u and v are connected by an edge. A heuristic function h is consistent or monotone if it satisfies the following:

$$h(u) \leq e(u, v) + h(v)$$

where $e(u, v)$ is the edge distance from u to v.

▶ Reasoning: If I want to reach T from u, then I can first go through v, then go to T from there. (This is very similar to the triangle inequality.)

▶ Example: $h(v) = 0$ is a consistent heuristic.
Consistent Heuristics

- Suppose two nodes u and v are connected by an edge. A heuristic function h is consistent or monotone if it satisfies the following:

$$h(u) \leq e(u, v) + h(v)$$

where $e(u, v)$ is the edge distance from u to v.

- Reasoning: If I want to reach T from u, then I can first go through v, then go to T from there. (This is very similar to the triangle inequality.)

- Example: $h(v) = 0$ is a consistent heuristic.

- Less trivial example, again: If our nodes are points on the plane, $h(v) = \sqrt{(v_x - T_x)^2 + (v_y - T_y)^2}$ is a consistent heuristic.
Consistent Heuristics

- Suppose two nodes u and v are connected by an edge. A heuristic function h is consistent or monotone if it satisfies the following:

$$h(u) \leq e(u, v) + h(v)$$

where $e(u, v)$ is the edge distance from u to v.

- Reasoning: If I want to reach T from u, then I can first go through v, then go to T from there. (This is very similar to the triangle inequality.)

- Example: $h(v) = 0$ is a consistent heuristic.

- Less trivial example, again: If our nodes are points on the plane, $h(v) = \sqrt{(v_x - T_x)^2 + (v_y - T_y)^2}$ is a consistent heuristic.

- All consistent heuristics are admissible. (Proof left to the reader.)
We are now ready to define the A* algorithm. Suppose we are given the following inputs:

- A graph \(G = (V, E) \), with nonnegative edge distances \(e(u, v) \)
- A start node \(S \) and an end node \(T \)
- An admissible heuristic \(h \)

Let \(d(v) \) store the best path distance from \(S \) to \(v \) that we have seen so far. Then we can think of \(d(v) + h(v) \) as the estimate of the distance from \(S \) to \(v \), then from \(v \) to \(T \). Let \(Q \) be a queue of nodes, sorted by \(d(v) + h(v) \).
Pseudocode for A*

\[d(v) \leftarrow \begin{cases} \infty & \text{if } v \neq S \\ 0 & \text{if } v = S \end{cases} \]

\(Q := \) the set of nodes in \(V \), sorted by \(d(v) + h(v) \)

while \(Q \) not empty do

\(v \leftarrow Q.pop() \)

for all neighbours \(u \) of \(v \) do

if \(d(v) + e(v, u) \leq d(u) \) then

\(d(u) \leftarrow d(v) + e(v, u) \)

end if

end for

end while

Comparison to Dijkstra’s Algorithm

Observation: A* is very similar to Dijkstra’s algorithm:

\[
\begin{align*}
d(v) & \leftarrow \begin{cases}
\infty & \text{if } v \neq S \\
0 & \text{if } v = S
\end{cases} \\
Q & := \text{the set of nodes in } V, \text{ sorted by } d(v)
\end{align*}
\]

while \(Q \) not empty do
\[
\begin{align*}
v & \leftarrow Q.pop() \\
f & \text{or all neighbours } u \text{ of } v \text{ do} \\
& \quad \text{if } d(v) + e(v, u) \leq d(u) \text{ then} \\
& \quad \quad d(u) \leftarrow d(v) + e(v, u) \\
& \quad \text{end if}
\end{align*}
\]
end for
end while
Comparison to Dijkstra’s Algorithm

Observation: A* is very similar to Dijkstra’s algorithm:

\[
d(v) \left\{ \begin{array}{ll}
\infty & \text{if } v \neq S \\
0 & \text{if } v = S
\end{array} \right.
\]

\[Q := \text{the set of nodes in } V, \text{ sorted by } d(v)\]

while \(Q\) not empty do

\[v \leftarrow Q.pop()\]

for all neighbours \(u\) of \(v\) do

\[\text{if } d(v) + e(v, u) \leq d(u) \text{ then}\]

\[d(u) \leftarrow d(v) + e(v, u)\]

end if

end for

end while

In fact, Dijkstra’s algorithm is a special case of A*, when we set \(h(v) = 0\) for all \(v\).
Performance

How good is A*?

▶ If we use an admissible heuristic, then A* returns the optimal path distance. Furthermore, any other algorithm using the same heuristic will expand at least as many nodes as A*.

▶ In practice, if we have a consistent heuristic, then A* can be much faster than Dijkstra's algorithm.

Example: Consider cities (points on the plane), with roads (edges) connecting them. Then the straight-line distance is a consistent heuristic. (Proofs may be found in most introductory textbooks on artificial intelligence.)
Performance

How good is A*?

- If we use an admissible heuristic, then A* returns the optimal path distance. Furthermore, any other algorithm using the same heuristic will expand at least as many nodes as A*.
Performance

How good is A*?

- If we use an admissible heuristic, then A* returns the optimal path distance. Furthermore, any other algorithm using the same heuristic will expand at least as many nodes as A*.
- In practice, if we have a consistent heuristic, then A* can be much faster than Dijkstra’s algorithm.
Performance

How good is A*?

- If we use an admissible heuristic, then A* returns the optimal path distance. Furthermore, any other algorithm using the same heuristic will expand at least as many nodes as A*.
- In practice, if we have a consistent heuristic, then A* can be much faster than Dijkstra’s algorithm.
- Example: Consider cities (points on the plane), with roads (edges) connecting them. Then the straight-line distance is a consistent heuristic.
How good is A*?

- If we use an admissible heuristic, then A* returns the optimal path distance. Furthermore, any other algorithm using the same heuristic will expand at least as many nodes as A*.
- In practice, if we have a consistent heuristic, then A* can be much faster than Dijkstra’s algorithm.
- Example: Consider cities (points on the plane), with roads (edges) connecting them. Then the straight-line distance is a consistent heuristic.

(Proofs may be found in most introductory textbooks on artificial intelligence.)