CPS 170
Introduction
Ron Parr

Contact Information
• Professor
 – Ron Parr
 – D209 LSRC, parr@cs.duke.edu, 660-6537
 – Office hours: Tuesday 1-2, Wednesday 2-3
• TA
 – Zheng Li
 – D125 LSRC, zhuang@cs.duke.edu, 660-6576
 – Office hours: Tuesday 2-3, Wednesday 3-4

About Me
• My sixth year at Duke
• Bachelor’s degree in philosophy (Princeton)
 – Philosophy of mind
• Ph.D. in computer science (Berkeley)
 – Hierarchical planning under uncertainty
• Current interests:
 – Planning under uncertainty
 – Probabilistic reasoning
 – Game theory
 – Reinforcement learning
 – Robotics
 – Sensing & Vision

Requirements
• Good programming skills:
 – C
 – Other languages OK, but will require extra work from you b/c you won’t be able to use our code
• Prerequisites
 – Short proofs
 – Basic probability concepts
 – Basic algorithmic concepts
 • Complexity - O()
 • Analysis of algorithms
 – Math
 • Partial derivatives

Major Topics Covered
• Search
 – A*, Games, SAT, CSPs
• Logic and Knowledge Representation
 – Propositional Logic
 – First Order Logic
• Planning
 – Classical, stochastic
• Reasoning under uncertainty
 – Bayes nets, decision theory, HMMs, tracking
• Introduction to robotics
• Learning
 – Decision trees, Neural nets, Reinforcement learning

Major Topics Not Covered
• Natural Language
• Vision
Class Mechanics

- Homeworks: 25%
 - Discussion OK, write-up must be your own
- Projects: 25%
 - Discussion OK, coding, write-up must be your own
- Midterm: 25%
 - Closed book, in class, no collaboration
- Final: 25%
 - Closed book, finals week, no collaboration

Why Study AI?

- Important innovations have grown out of AI
 - Linked list manipulation (Lisp)
 - Timesharing
 - X
 - Formalization of search techniques
 - Heuristics for intractable (NP hard) problems
 - Pattern recognition methods
- Cool tools
- Cool applications

Cool AI Applications

- AI is lurking in more places than you think:
 - PDAs
 - This Program
 - E-commerce
 - Voice/language recognition
 - Voice jail
 - My car
 - Dragon naturally speaking
 - Deep Blue
 - Mobile robotics
 - Space exploration
 - Logistics planning

So, what is this AI stuff?

- Make machines *think* like humans
 - Is this enough?
 - Is this too much?
- Make machines *act* like humans
 - Is this sufficient?
 - Is this desirable?

Turing Test

- Computer must be indistinguishable from a human based upon written exchanges
 - Does this imply intelligence?
 - How could the computer cheat?
 - Does intelligence imply a certain type of computation?
 - Could an intelligent machine still fail the test?
- Does our notion of intelligence transcend our concept of humanity?

Ideal Intelligence

- Intelligence means making optimal choices
- Is anything truly intelligent?
- How do we define optimality?
- Is there a more modest goal?
Ron’s Compromise Definition

Artificial Intelligence is the task of developing general purpose algorithms with which machines can accomplish tasks which, if performed by a human, would be considered indicative of intelligence.

The Moving Target

- What is human intelligence?
 - At one time, calculating ability was prized
 - Now it is deprecated
 - Calculators permitted earlier and earlier in school
- Chess was once viewed as an intelligent task
 - Now, massively parallel computers use not very intelligent search procedures to beat grand masters
 - Some say Deep Blue wasn’t AI
- Learning once thought uniquely human
 - Now it’s a well-developed theory
 - Best backgammon player is a learning program

Artificial Flight

- Even seemingly unambiguous terms such as “flight” were subject to biological chauvinism.

- Demonstrable, unambiguous success ended chauvinism

Intelligence: A web of abilities

- Intelligence is hard to define in isolation
- We are an odd mixture of special purpose and general purpose hardware
 - Special purpose
 - Recognizing visual patterns
 - Learning and reproducing language
 - General Purpose
 - Theorem proving
 - Learning and excelling at new tasks
- Seamless integration

Early Efforts: General

- Good news:
 - Many problems can be formalized as instances of
 - Search
 - Logical deduction
 - The space of all proofs is a (somewhat) searchable space
 - Knowledge base + theorem proving provide a satisfying picture or reasoning, knowledge and learning
 - Tell PC:
 - All men are mortal
 - Socrates is a man
 - Ask:
 - Is Socrates mortal?

Bad news for general methods

- Searching in proof space is hard
- Even if searching were easy, representing knowledge is hard
 - What is a chair?
- Knowledge is interconnected in subtle ways
 - Chairs
 - People
 - Gravity
 - Customs…
Early Efforts: Special Purpose Methods

- Neural networks attempted to reproduce the function of human neurons
- Wing-flapping mechanical flying machine?
- Success at reproducing low-level tasks
 - Pattern recognition, associative memory
- Huge gap between low and high level
- Nearly became a religion

Overpromising and the AI Winter

- Years of
 - Naive optimistic
 - Unrealistic assessments of challenges
 - Poor scientific/academic discipline
- Lead to (early 90’s)
 - Backlash
 - Reduced government funding
 - Reduced investment from industry
 - The “AI Winter”

AI Moving Forward

- Study broad classes of problems
- Restrict problem somewhat:
 - Develop a crisp input specification
 - Develop a well-defined success criterion
- Develop results with
 - Provable properties
 - Broad applicability
- Extract and study underlying principles behind successful methods

Conclusion

- We want to solve hard problems that would traditionally require human-level intelligence.
 (Most we consider are at least NP-hard.)
- We want to be good computer scientists, so we force ourselves to use well-defined input/output specifications.
- We aim high, but we let ourselves simplify things if it allows us to produce a general-purpose tool with well-understood properties.