NP Hardness & CSPs
CPS 170
Ron Parr

Digression: NP-Hardness

• NP hardness is not an AI topic
• You will not be tested on it, but

• It’s important for all computer scientists
• Understanding it will deepen your understanding of AI (and other CS) topics

• Eat your vegetables; they’re good for you
NP-hardness

• Many problems in AI are NP-hard (or worse)
• What does this mean?
• These are some of the hardest problems in CS
• Identifying a problem as NP hard means:
 – You probably shouldn’t waste time trying to find a polynomial time solution
 – If you find a polynomial time solution, either
 • You have a bug
 • Find a place on your shelf for your Turing award
• NP hardness is a major triumph (and failure) for computer science theory

What is the class NP?

• A class of decision problems (Yes/No)
• Solutions can be verified in polynomial time
• Examples:
 – Graph coloring:

 ![Graph Coloring Diagram]

 – Sortedness: [1 2 3 4 5 8 7]
What is NP completeness?

• All NP complete problems can be “reduced” to each other in polynomial time
• What is a reduction?
 – Use one problem to solve another
 – A is reduced to B, if we can use B to solve A:

Why care about NP-completeness?

• Solving any one NP-complete problem gives you the key to all others
• All NP-complete problems are, in a sense, equivalent
• Insight into solving any one gives you insight into solving a vast array of problems of extraordinary practical and economic significance
Proving NP Completeness

• Want to prove problem C is NP complete
 – Show that C is in NP
 – Find known NP complete problem reducible to C
 – Is graph color NP-complete?
 • Prove that graph coloring is in NP
 – Verify solution in poly time
 – Easy
 • Reduce known NP complete problem to graph coloring
 – Much more challenging
 – Reduction from SAT

The First NP Complete Problem
(Cook 1971)

• SAT:

\[(X_1 \lor \overline{X}_7 \lor X_{13}) \land (\overline{X}_2 \lor X_{12} \lor X_{25}) \land \ldots\]

• Want to find an assignment to all variables that makes this expression evaluate to true
• NP-complete for clauses of size 3 or greater
• How would you prove this?
What is NP Hardness?

- NP hardness is weaker than NP completeness
- NP hard if an NP complete problem is reducible to it
- NP completeness = NP hardness + NP membership
- Consider the problem #SAT
 - How many satisfying assignments to:
 \[(X_1 \lor \overline{X}_7 \lor X_{13}) \land (\overline{X}_2 \lor X_{12} \lor X_{25}) \land ...\]
 - Is this in NP? (Not even a decision problem)
 - Is it NP-hard?

#SAT is NP-hard

- Theorem: #SAT is NP hard
- Proof:
 - Reduce SAT to #SAT

\[
\begin{array}{c}
\text{SAT instance} \rightarrow \text{#SAT solver} \rightarrow \text{SAT Solver} \\
\text{If } x > 0 \text{ return } Y \text{ Else return } N
\end{array}
\]
NP-Completeness Summary

- NP-completeness tells us that a problem belongs to class of similar, hard problems.
- What if you find that a problem is NP hard?
 - Look for good approximations
 - Find different measures of complexity
 - Look for tractable subclasses
 - Use heuristics

CSPs

- What is a CSP?
- One view: Search with special goal criteria
- CSP definition (general):
 - Variables $X_1, ..., X_n$
 - Variable X_i has domain D_i
 - Constraints $C_1, ..., C_m$
 - Solution: Each variable gets a value from its domain such that no constraints violated
- CSP examples...
 - http://www.csplib.org/
Other CSP Examples

- Satisfying curriculum/major requirements
- Sudoku
- Seating arrangements at a party
- LSAT Questions: http://www.lsac.org/pdfs/SamplePTJune.pdf

A Restricted View

- Variables X_1, \ldots, X_n
- A binary constraint, lists permitted assignments to pairs of variables
- A binary constraint between binary variables is a table of size 4, listing legal assignments for all 4 combinations.
- A k-ary constraint lists legal assignments to k variables at a time.
- How large is a k-ary constraint for binary variables?

Note: More expressive languages are often used.
CSP Example

Graph coloring:

Problem: Assign Red, Green and Blue so that no 2 adjacent regions have the same color. (3-coloring)

Example Contd.

- Variables: \{WA, NT, Q, SA, NSW, V, T\}
- Domains: \{R,G,B\}
- Constraints:
 - For WA – NT: \{(R,G), (R,B), (G,B), (G,R), (B,R), (B,G)\}
- We have a table for each adjacent pair
- Are our constraints binary?
- Can every CSP be viewed as a graph problem?
Enumerate all legal combinations of WA and SA (ignoring other regions)

Nodes: Partial Assignments Actions: Make Assignments
Backtracking

- Backtracking is the most obvious (and widely used) method for solving CSPs:
 - Search forward by assigning values to variables
 - If stuck, undo the most recent assignment and try again
 - Repeat until success or all combinations tried

- Embellishments
 - Methods for picking next variable to assign
 - Most constrained
 - Least constrained
 - Backjumping

NP-Completeness of CSPs

- Are CSPs in NP?
- Are they NP-hard?

- CSPs and graph coloring are equivalent
 - Convert any graph coloring problem to CSP
 - Convert any CSP to graph coloring

- Known: Graph coloring is NP-complete
- CSPs are NP-complete
- End of the story or just the beginning?
Issues

• What are good heuristics?
 – N.B.: Here we use the term “heuristic” to refer to a procedure for selecting next variables, not an h(x) function as in A*
 – Often good to think of this as a local search
 – Focus on choosing actions carefully, instead of pruning nodes carefully (as in A* or alpha-beta)

• Can we develop heuristics that apply to the entire class of problems, not just specific instances?

• What’s the best we can hope for?

Constraint Graphs

• Constraint graphs are important because they capture the structural relationships between the variables

• IMPORTANT CONCEPT:

 Not all instances of a hard problem class are hard

 – Structural features give insight into hardness
 – Group problems within class by structural features
 – New measure of problem complexity
Node Consistency

- Check all nodes for inconsistencies
- For each node, there must exist at least one valid assignment given assignments to neighbors
- Rules out some bad assignments quickly

Arc Consistency

- Check all arcs for inconsistencies
- For each value at the start, there must exist a consistent value at the terminus
- Catches many inconsistencies
- Can use to iteratively reduce number of possible assignments to each variable (constraint propagation)
Generalized Arc Consistency

- **k-consistency**
 - Consider sets of \(k \) variables
 - For each legal setting of a \(k-1 \) subset
 - Check for legal setting for the \(k^{th} \) variable

- Checks for more distant influences
- Prunes out inconsistent settings

- 1-consistency = node consistency
- 2 consistency = arc consistency

Is this 3-consistent?

Facts About Arc Consistency

- Strong \(k \)-consistency: Consistent for all \(i < k \)
- What if a graph with \(n \) variables is strongly \(n \)-consistent?

 Solution exists!

- What is the worst-case cost of checking \(n \)-consistency?

 \(O(2^n) \)
Linear Constraint Structures

Are these easy or hard?

Suppose our chain is arc consistent...

Properties of Chains

Theorem: Arc consistent linear constraint graphs are strongly n consistent.

Proof: Induction on n.

Base: Arc consistent chains of length 1 are consistent.

I.H. Arc consistent chains of length i are strongly i consistent

I.S. Extending an i step arc-consistent chain by 1 new arc consistent link produces an i+1 link strongly i+1 consistent chain.

Proof of I.S.: Since the last link is strongly arc-consistent, any choice for variable i ensures a consistent choice for i+1. No other variables participate in constraints for i+1.
Properties of Trees

Theorem: Arc consistent constraint trees are n consistent.

Proof: Same as chain case...

Corollary: Hardness of CSPs with constraint trees

Polynomial!

Cool fact: We now have a graph-based test for separating out some of the hard problems from the easy ones.

Variable Elimination

Domain(NT,SA) = \{\text{blue, green}, (\text{blue, red}), (\text{green, blue}), (\text{green, red}), (\text{red, blue}), (\text{red, green})\}
Eliminate Q

\[
\text{Domain}(NT, SA, NSW) = \{(\text{blue, green, blue}), (\text{blue, red, blue}), (\text{red, blue, red}), (\text{red, green, red}), (\text{green, blue, green}), (\text{green, red, green})\}
\]

Simplify

\[
\text{Domain}(SA, NSW) = \{(\text{blue, green}), (\text{blue, red}), (\text{green, blue}), (\text{green, red}), (\text{red, blue}), (\text{red, green})\}
\]

\[
\text{Domain}(NT, SA, NSW) = \{(\text{blue, green, blue}), (\text{blue, red, blue}), (\text{red, blue, red}), (\text{red, green, red}), (\text{green, blue, green}), (\text{green, red, green})\}
\]
Domain(SA, NSW) =
{(blue, green), (blue, red),
(green, blue), (green, red),
(red, blue), (red, green)}

Can identify all settings of SA, V, NSW for which there is guaranteed to be a consistent setting of the remaining variables.

Q: How do we get the settings of the other variables?

Variable Elimination

Var_elim_CSP_solve (vars, constraints)
Q = queue of all variables
i = length(vars)+1
While not(empty(Q))
 X = pop(Q)
 Xi = merge(X, neighbors(X))
 Simplify Xi
 remove_from_Q(Q, neighbors(X))
 add_to_Q(Q, Xi)
i=i+1

Note: Merge operation can be tricky to implement, depending upon constraint language.
Variable Elimination Issues

• How expensive is this?

 Exponential in size of largest merged variable set – 1.

• Is it sensitive to elimination ordering?

 Yes!

Variable Elimination Ordering

Is it better to start at the edges and work in, or at the center and work out?

 Edges!
Variable Elimination Facts

- You can figure out the cost of a particular elimination ordering without actually constructing the tables
- Finding optimal elimination ordering is NP hard
- Good heuristics for finding near optimal orderings
- Another structural complexity measure
- Investment in finding good ordering can be amortized

CSP Summary

- CSPs are a specialized language for describing certain types of decision problems
- We can formulate special heuristics and methods for problems that can be described in this language
- In general, CSPs are NP hard – no general, fast solutions on the horizon
- In some cases, we can use structural measures of complexity to figure out which ones are really hard