Logic Intro

CPS 170
Ron Parr

Historical Perspective I

• Logic was one of the classical foundations of AI
• Dream: A Knowledge-Based agent
 – Tell the agent facts
 – Agent uses rules of inference to deduce consequences
 – Example: prolog
• Distinction between data and program
• Embodied in field of “Expert Systems”
Example: Minesweeper

- How do you play minesweeper?
- How would you program a machine to do it?
 - Hacking
 - Search
 - Logic
- Logic approach
 - Tell the system of rules of minesweeper
 - System uses logic to make the best moves

What is logic, really?

- Syntax: Rules for constructing valid sentences

- Semantics: Relate syntax to the real world
Entailment

• Aim: Rule for generating (or testing) new sentences that are necessarily true

• The truth of sentence may depend upon the interpretation of the sentence

Interpretations

• An interpretation is a way of matching up objects in the universe with symbols in a sentence (or database).

• A sentence may be true in one interpretation, but false in another

• A necessarily true sentence is true in all interpretations (perhaps given some premises in our KB)
Examples

• Premises (facts in our database):
 – (X or Y)
 – Not X
 – Conclude: Y is necessarily true

• Premises
 – If P then Q
 – Q
 – Conclude: P is not necessarily true
 (though might be true in some interpretations)

Soundness & Completeness

• A (set of) rule(s) of inference is sound if it generates only sentences that are entailed by the knowledge base, i.e., only necessary truths

• A (set of) rule(s) of inference is complete if it can generate all necessary truths

• Can we have one w/o the other?
Historical Perspective II

- Things that are not true necessarily but still true are sometimes said to be “contingent,” “accidental,” or “synthetic,” truths.

- A deep understanding of this distinction evolved through thousands of years of philosophy and mathematics.

- Arguably one of the most important intellectual accomplishments of mankind
 - Basis of mathematic proofs
 - Provides a rigorous procedure for verifying statements

Propositional Logic

- Propositional logic is the simplest logic
- All sentences are composed of
 - Atoms
 - Negation
 - Disjunction, conjunction (or, and)
 - Conditional, biconditionals
- Atoms can map to any proposition about the universe (depending upon the interpretation)
Checking Validity

• Classic method for checking validity: truth table
• Enumerate all possible values (t/f) of atomic elements of a sentence

\[(P \lor H) \]

\[\neg H \]

\[\frac{}{P} \]

• Enumerate all 4 (or more) combinations

Inference Rules

• Inference rules are (typically) sound methods of generating new sentences given a set of previous sentences

• Inference rules save us the trouble of generating truth tables all of the time
Inference Rules I

• Modus Ponens

\[\alpha \Rightarrow \beta, \alpha \]
\[\beta \]

• And-Elimination

\[\alpha_1 \land \alpha_2 \land \ldots \land \alpha_n \]
\[\alpha_i \]

Inference Rules II

• And-Introduction

\[\alpha_1, \alpha_2, \ldots, \alpha_n \]
\[\alpha_1 \land \alpha_2 \land \ldots \land \alpha_n \]

• Or-Introduction

\[\alpha_i \]
\[\alpha_1 \lor \alpha_2 \lor \ldots \lor \alpha_n \]
Inference Rules III

• Double Negation Elimination

\[
\begin{align*}
\neg\neg\alpha & \quad \Rightarrow \quad \alpha
\end{align*}
\]

• Unit Resolution

\[
\begin{align*}
\alpha \lor \beta, \neg\beta & \quad \Rightarrow \quad \alpha
\end{align*}
\]

Resolution

\[
\begin{align*}
\alpha \lor \beta, \neg\beta \lor \gamma & \quad \Rightarrow \quad \alpha \lor \gamma
\end{align*}
\]

Resolution is perhaps the most important inference rule!

Why? Resolution is both sound and complete!
Complexity of Inference

• What is the complexity of exhaustively verifying the validity of a sentence with \(n \) literals (variables)?
 \[2^n \]

• Special Case: Horn Logic
 – Horn clauses are disjunctions with at most one positive literal
 – Equivalent to \(P_1 \land P_2 \land \ldots \land P_n \implies Q \)

Remember De Morgan’s Law?

• \(\neg(P \land Q) = (\neg P) \lor (\neg Q) \)

• \(\neg(P \lor Q) = (\neg P) \land (\neg Q) \)

• Surprisingly, no relationship to Captain Morgan
Implications and Horn Clauses

• If P then Q
 – Same as: (not (P and (not Q))
 – Same as: (not P) or Q
 – ...and this is horn!
• If (P1 and P2 and ... Pn) then Q
 – Same as: (not ((P1 and P2 and ... Pn) and (not Q))
 – Same as: not (P1 and P2 and ... Pn) or Q
 – Same as: ((not P1) or (not P2) or ... (not Pn) or Q
 – ...and this is horn!

Horn Clause Inference

• Horn clause inference is polynomial – Why?
 – Every sentence establishes exactly one new fact
 – Can add every possible new fact implied by our KB in n passes over our database
• What types of things are easy to represent with horn clauses?
 – Diagnostic rules
 – “Expert Systems”
Shortcomings of Horn Clauses

• Suppose you want to say, “If you have a runny nose and fever, then you have a cold or the flu.”
• If (runny_nose and fever) then (cold or flu)
• But this isn’t a horn clause:
 (not runny_nose) or (not fever) or (cold) or (flu)
• Does adding two separate horn clauses work?
 – (not runny_nose) or (not fever) or (cold)
 – (not runny_nose) or (not fever) or (flu)

Propositional Logic Conclusion

• Logic gives formal rules for reasoning
• Necessarily true = true in all interpretations
• Contrast with CSPs: Satisﬁable = true in some, but not necessarily all interpretations
• Sound inference rules generate only necessary truths
• Resolution is a sound and complete inference rule
• Inference with a horn KB is poly time