CPS 170
Search I

Ron Parr

With thanks to Vince Conitzer for some slides and figures

What is Search?

• Search is a basic problem-solving method
• We start in an initial state
• We examine states that are (usually) connected by a sequence of actions to the initial state
• Note: Search is a thought experiment

• We aim to find a solution, which is a sequence of actions that brings us from the initial state to the goal state, minimizing cost
Search vs. Web Search

• When we issue a search query using Google, does Google really go poking around the web for us?

• Not in real time!
• Google spiders the web continually, caches results
• Uses page rank algorithm to find the most “popular” web pages that are consistent with your query

Overview

• Problem Formulation
• Uninformed Search
 – DFS, BFS, IDDFS, etc.
• Informed Search
 – Greedy, A*
• Properties of Heuristics
Problem Formulation

- Four components of a search problem
 - Initial State
 - Actions
 - Goal Test
 - Path Cost
- Optimal solution = lowest path cost to goal

Example: Path Planning

Find shortest route from one city to another using highways.
Example 8(15)-puzzle

Possible Start State

Solution

Goal State

Actions: UP, DOWN, RIGHT, LEFT

“Real” Problems

- Robot motion planning
- Drug design
- Logistics
 - Route planning
 - Tour Planning
- Assembly sequencing
- Internet routing
Why Use Search?

- Other algorithms exist for these problems:
 - Dijkstra’s Algorithm
 - Dynamic programming
 - All-pairs shortest path
- Use search when it is too expensive to enumerate all states
- 8-puzzle has 362,800 states
- 15-puzzle has 1.3 trillion states
- 24-puzzle has 10^{25} states

Basic Search Concepts

- Assume a tree-structured space (for now)
- Nodes: Places in search tree
 (states exist in the problem space)
- Search tree: portion of state space visited so far
- Actions: Connect states to next states
- Expansion: Generation of next states for a state
- Frontier: Set of states visited, but not expanded
- Branching factor: Max no. of successors = b
- Goal depth: Depth of shallowest goal = d
Example Search Tree

b=2

Frontier

8-puzzle

1 2
4 5 3
7 8 6

1 2
4 5 3
7 8 6

1 2
4 5 3
7 8 6

1 5 2
4 3
7 8 6
Generic Search Algorithm

Function Tree-Search(problem, Queuing-Fn)

fringe = Make-Queue(Make-Node(Initial-State(problem)))
loop do
 if empty(fringe) then return failure
 node = pop(fringe)
 if Goal-Test(problem, state) then return node
 fringe = Add-To-Queue(fringe, expand(node, problem))
end

Interesting details are in the implementation of Add-To-Queue

Evaluating Search Algorithms

• Completeness:
 – Is the algorithm guaranteed to find a solution when there is one?
• Optimality:
 – Does the algorithm find the optimal solution?
• Time complexity
• Space complexity
Uninformed Search: BFS

Frontier is a FIFO

BFS Properties

- Completeness: \(\text{Y} \)
- Optimality: \(\text{Y} \) (for uniform cost)
- Time complexity: \(O(b^{d+1}) \)
- Space complexity: \(O(b^{d+1}) \)
Uninformed Search: DFS

Frontier is a LIFO

DFS Properties

- Completeness: \(N \) (unless tree is finite)
- Optimality: \(N \)
- Time complexity: \(O(b^{m+1}) \) (m = depth we hit, m>d?)
- Space complexity: \(O(bm) \)
Iterative Deepening

• Want:
 – DFS memory requirements
 – BFS optimality, completeness

• Idea:
 – Do a depth-limited DFS for depth m
 – Iterate over m

IDDFS
IDDFS Properties

- Completeness: Y
- Optimality: Y (whenever BFS is optimal)
- Time complexity: $O(b^{d+2})$
- Space complexity: $O(bd)$

IDDFS vs. BFS

Theorem: IDDFS visits no more than twice as many nodes for a binary tree as BFS.

Proof: Assume the tree bottoms out at depth d, BFS visits:

$$2^{d+1} - 1$$

In the worst case, IDDFS does no more than:

$$\sum_{i=1}^{d}(2^{i+1} - 1) = \sum_{i=1}^{d}2^{i+1} - \sum_{i=1}^{d}1 = (2^{d+2} - 2) - d \leq 2(2^{d+1} - 1) = 2 \times BFS(d)$$

What about b-ary trees? IDDFS relative cost is lower!
Bi-directional Search

\[b^{d/2} + b^{d/2} \ll b^d \]

Issues with Bi-directional Search

- Uniqueness of goal
 - Suppose goal is parking your car
 - Huge no. of possible goal states (configurations of other vehicles)
- Invertability of actions
What About Repeated States (graphs)

- Can cause incompleteness or enormous runtimes
- Can maintain list of previously visited states to avoid this
 - If new path to the same state has greater cost, don’t pursue it further
 - Leads to time/space tradeoff
- “Algorithms that forget their history are doomed to repeat it” [Russell and Norvig]

Informed Search

- Idea: Give the search algorithm hints
- Heuristic function: $h(x)$
- $h(x) = \text{estimate of cost to goal from } x$
- If $h(x)$ is 100% accurate, then we can find the goal in $O(bd)$ time
Greedy Search

- Expand node with lowest h(x)
- Optimal if h(x) is 100% correct
- How can we get into trouble with this?

What Price Greed?

What’s broken with greedy search?
A*

- Path cost so far: \(g(x) \)
- Total cost estimate: \(f(x) = g(x) + h(x) \)
- Maintain frontier as a priority queue
- \(O(bd) \) time if \(h \) is 100% accurate
- We want \(h \) to be an \textit{admissible} heuristic
- Admissible: never overestimates cost

Some A* Properties

- Implies \(h(x)=0 \) if \(x \) is a goal state
- Implies \(f(x)=\text{cost to goal} \) if \(x \) is a goal state and \(x \) is popped off the queue

- What if \(h(x)=0 \) for all \(x \)?
 - Is this admissible?
 - What does the algorithm do?
Optimality of A*

- If \(h \) is admissible, A* is optimal
- Proof (by contradiction):
 - Suppose a suboptimal solution node \(n \) with solution value \(f(n) > C^* \) is about to be expanded (where \(C^* \) is optimal)
 - Let \(n^* \) be a goal state found on optimal path
 - There must be some node \(n' \) that is currently in the fringe and on the path to \(n^* \)
 - We have \(f(n) > C^* \), and \(f(n') = g(n') + h(n') \leq C^* \)
 - But then, \(n' \) should be expanded first (contradiction)

Does A* fix the greedy problem?
A* is optimally efficient

• A* is optimally efficient: Any other optimal algorithm must expand at least the nodes A* expands

• Proof:
 – Besides solution, A* expands the nodes with \(g(n) + h(n) < C^* \)
 • Assuming it does not expand non-solution nodes with \(g(n) + h(n) = C^* \)
 – Any other optimal algorithm must expand at least these nodes (since there may be a better solution there)

• Note: This argument assumes that the other algorithm uses the same heuristic h

Properties of Heuristics

• h2 dominates h1 if h2(x) > h1(x) for all x
• Does this mean that h2 is better?

• Suppose you have multiple admissible heuristics. How do you combine them?
Designing heuristics

- One strategy for designing heuristics: relax the problem
- “Number of misplaced tiles” heuristic corresponds to relaxed problem where tiles can jump to any location, even if something else is already there
- “Sum of Manhattan distances” corresponds to relaxed problem where multiple tiles can occupy the same spot
- The ideal relaxed problem is
 - easy to solve,
 - not much cheaper to solve than original problem
- Some programs can successfully automatically create heuristics