Problem 1.

For each of the following modifications, show the result B^+-tree obtained by applying the modification to the B^+-tree shown below. Suppose that the maximum fan-out is 4. (Always start with the B^+-tree shown below; do not apply the modifications to the result of previous modifications.)

(a) Insert 21.
(b) Delete 50.
(c) Insert 79.
(d) Delete 10.

Problem 2.

A table $R(K, A, \ldots)$ with 100,000 rows is stored in 10,000 disk blocks. The rows are sorted by K, but not by A. There is a dense, secondary B^+-tree index on $R(A)$, which has 3 levels and 500 leaves.

Suppose we want to sort R by A. We have 101 memory blocks at our disposal. Method 1 performs an external-memory merge sort using all memory available. Method 2 takes advantage of the fact that the values of A are already sorted in the B^+-tree index on $R(A)$: It simply scans the leaves of the index to retrieve and output R rows in order.

How many disk I/O’s do these two methods require? Which one is the winner?

Problem 3.

How many possible plans are there for an n-way join query $R_1 \bowtie R_2 \bowtie \ldots \bowtie R_n$, if we use only one type of asymmetric binary join operator in our plans? Your answer should be a closed-form or recurrence formula in terms of n. Also, compute your answer for $n = 7$.

Remember to consider all bushy plans—not just left-deep ones. For example, three possible plans for $n = 3$ are shown below. There are a total of 12 plans for $n = 3$.
Problem 4.

Consider tables \(R(A, B, C), S(C, D), \) and \(T(D, E)\). Transform the following query into an equivalent query that:
- Contains no cross products;
- Performs projections and selections as early as possible.

\[\pi_{R, S, T} \sigma_{(R.A=10) \land (R.A=R.C) \land (S.D=T.D) \land (R.A>T.E)} (R \times S \times T)\]

Suppose we have the following statistics:
- \(|R| = 1,000; |\pi_A R| = 1,000; |\pi_B R| = 100; |\pi_C R| = 500;\)
- \(|S| = 5,000; |\pi_C S| = 300; |\pi_D S| = 10;\)
- \(|T| = 4,000; |\pi_D T| = 4,000; |\pi_E T| = 1,500.\)

Estimate the number of the tuples returned by the following queries:

\[\sigma_{A=10} R\]
\[\sigma_{A=10} \land B=\text{"Bart"} R\]
\[\sigma_{A=10} \lor B=\text{"Bart"} R\]
\[R \bowtie S\]
\[R \bowtie S \bowtie T\]

For the following question, further suppose that:
- Each disk/memory block can hold up to 10 tuples;
- All tables are stored compactly on disk (10 tuples per block) in no particular order;
- No indexes are available;
- 11 memory blocks are available for query processing.

\[\sigma_{R.B=\text{"Bart"} \land S.D=100} (R \bowtie S)\]
What is the best execution plan (in terms of number of I/O’s performed) you can come up with for the query \(\sigma_{R.B=\text{"Bart"} \land S.D=100} (R \bowtie S)\)? Describe your plan and show the calculation of its I/O cost.