SQL: Recursion

CPS 196.3
Introduction to Database Systems

A motivating example

<table>
<thead>
<tr>
<th>Parent (parent, child)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer, Bart</td>
</tr>
<tr>
<td>Homer, Lisa</td>
</tr>
<tr>
<td>Marge, Bart</td>
</tr>
<tr>
<td>Marge, Lisa</td>
</tr>
<tr>
<td>Abe, Homer</td>
</tr>
<tr>
<td>Abe, Abe</td>
</tr>
</tbody>
</table>

- Example: find Bart’s ancestors
- “Ancestor” has a recursive definition
 - X is Y’s ancestor if
 - X is Y’s parent, or
 - X is Z’s ancestor and Z is Y’s ancestor

Recursion in SQL

- SQL2 had no recursion
 - You can find Bart’s parents, grandparents, great grandparents, etc.
 - But you cannot find all his ancestors with a single query
- SQL3 introduces recursion
 - WITH clause
 - Implemented in DB2 (called common table expressions)
Ancestor query in SQL3

```sql
WITH Ancestor(anc, desc) AS
    ((SELECT parent, child FROM Parent)
     UNION
     (SELECT a1.anc, a2.desc
      FROM Ancestor a1, Ancestor a2
      WHERE a1.desc = a2.anc))
    SELECT anc
    FROM Ancestor
    WHERE desc = 'Bart';
```

How do we compute such a recursive query?

Fixed point of a function

- If \(f: T \rightarrow T \) is a function from a type \(T \) to itself, a fixed point of \(f \) is a value \(x \) such that \(f(x) = x \).
- Example: What is the fixed point of \(f(x) = x/2 \)?

To compute a fixed point of \(f \):
- Start with a "seed": \(x \leftarrow x_0 \)
- Compute \(f(x) \)
 - If \(f(x) = x \), stop; \(x \) is fixed point of \(f \)
 - Otherwise, \(x \leftarrow f(x) \); repeat
- Example: compute the fixed point of \(f(x) = x/2 \)
 - With seed 1:

Fixed point of a query

- A query \(q \) is just a function that maps an input table to an output table, so a fixed point of \(q \) is a table \(T \) such that \(q(T) = T \).
- To compute fixed point of \(q \):
 - Start with an empty table: \(T \leftarrow \emptyset \)
 - Evaluate \(q \) over \(T \)
 - If the result is identical to \(T \), stop; \(T \) is a fixed point
 - Otherwise, let \(T \) be the new result; repeat
- Starting from \(\emptyset \) produces the unique minimal fixed point (assuming \(q \) is monotonic)
Finding ancestors

WITH Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc))

Think of it as
\(\text{Ancestor} = \text{q(Ancestor)} \)

<table>
<thead>
<tr>
<th>parent</th>
<th>child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
<td>Bart</td>
</tr>
<tr>
<td>Homer</td>
<td>Lisa</td>
</tr>
<tr>
<td>Marge</td>
<td>Bart</td>
</tr>
<tr>
<td>Marge</td>
<td>Lisa</td>
</tr>
<tr>
<td>Abe</td>
<td>Homer</td>
</tr>
<tr>
<td>Abe</td>
<td>Lisa</td>
</tr>
</tbody>
</table>

Intuition behind fixed-point iteration

- Initially, we know nothing about ancestor-descendent relationships
- In the first step, we deduce that parents and children form ancestor-descendent relationships
- In each subsequent steps, we use the facts deduced in previous steps to get more ancestor-descendent relationships
- We stop when no new facts can be proven

Linear recursion

- With linear recursion, a recursive definition can make only one reference to itself
- Non-linear:
 WITH Ancestor(anc, desc) AS
 ((SELECT parent, child FROM Parent)
 UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc))
- Linear:
 WITH Ancestor(anc, desc) AS
 ((SELECT parent, child FROM Parent)
 UNION
)
Linear vs. non-linear recursion

- Linear recursion is easier to implement
 - For linear recursion, just keep joining newly generated Ancestor rows with Parent.
 - For non-linear recursion, need to join newly generated Ancestor rows with all existing Ancestor rows.
- Non-linear recursion may take fewer steps to converge
 - Example: $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e$
 - Linear recursion takes 4 steps
 - Non-linear recursion takes 3 steps.

Mutual recursion example

- Table Natural (n) contains 1, 2, ..., 100.
- Which numbers are even/odd?
 - An odd number plus 1 is an even number.
 - An even number plus 1 is an odd number.
 - 1 is an odd number.

WITH Even(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd)),
Odd(n) AS
((SELECT n FROM Natural
WHERE n = 1)
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even)))

Operational semantics of WITH

- WITH R_1 AS Q_1, ..., R_n AS Q_n
- Q: Q_1, ..., Q_n may refer to R_1, ..., R_n
- Operational semantics
 1. $R_1 \leftarrow \emptyset$, ..., $R_n \leftarrow \emptyset$
 2. Evaluate Q_1, ..., Q_n using the current contents of R_1, ..., R_n.
 $R_1^{\text{new}} \leftarrow Q_1$, ..., $R_n^{\text{new}} \leftarrow Q_n$.
 3. If $R_i^{\text{new}} \neq R_i$ for any i.
 3.1. $R_i \leftarrow R_i^{\text{new}}$, ..., $R_n \leftarrow R_n^{\text{new}}$
 4. Compute Q using the current contents of R_1, ..., R_n and output the result.
Computing mutual recursion

WITH Even(n) AS
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Odd)),
Odd(n) AS
 ((SELECT n FROM Natural WHERE n = 1)
 UNION
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Even)))

Even = ∅, Odd = ∅

Mixing negation with recursion

WITH Scholarship(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM DeansList)),
DeansList(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM Scholarship))
Fixed-point iteration does not converge

WITH Scholarship(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM DeansList)),
 DeansList(SID) AS
 (SELECT SID FROM Student WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM Scholarship))

Student
<table>
<thead>
<tr>
<th>SID</th>
<th>Name</th>
<th>Age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>999</td>
<td>Jessica</td>
<td>10</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Scholarship DeansList

Legal mix of negation and recursion

- Construct a dependency graph
 - One node for each table defined in WITH
 - A directed edge \(R \rightarrow S \) if \(R \) is defined in terms of \(S \)
 - Label the directed edge "–" if the query defining \(R \) is not monotone with respect to \(S \)
- Legal SQL3 recursion: no cycle containing a "–" edge
 - Called stratified negation
- Bad mix: a cycle with at least one edge labeled "–"
Stratified negation example

- Find pairs of persons with common ancestors

```sql
WITH Ancestor(anc, desc) AS
  (SELECT parent, child FROM Parent) UNION
  (SELECT a1.anc, a2.desc
   FROM Ancestor a1, Ancestor a2
   WHERE a1.desc = a2.anc),

Person(person) AS
  (SELECT parent FROM Parent) UNION
  (SELECT child FROM Parent),

NoCommonAnc(person1, person2) AS
  (SELECT p1.person, p2.person
   FROM Person p1, Person p2
   WHERE p1.person <> p2.person)
  EXCEPT
  (SELECT a1.desc, a2.desc
   FROM Ancestor a1, Ancestor a2
   WHERE a1.anc = a2.anc)

SELECT * FROM NoCommonAnc;
```

Evaluating stratified negation

- The stratum of a node R is the maximum number of “–” edges on any path from R in the dependency graph
 - Ancestor: stratum 0
 - Person: stratum 0
 - NoCommonAnc: stratum 0

- Evaluation strategy
 - Compute tables lowest-stratum first
 - For each stratum, use fixed-point iteration on all nodes in that stratum
 - Stratum 0: Ancestor and Person
 - Stratum 1: NoCommonAnc

 Intuitively, there is no negation within each stratum.

Summary

- SQL3 WITH recursive queries
- Solution to a recursive query (with no negation): unique minimal fixed point
- Computing unique minimal fixed point: fixed-point iteration starting from \emptyset
- Mixing negation and recursion is tricky
 - Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
 - Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)