Overview

- Many different ways of processing the same query
 - Scan? Sort? Hash? Use an index?
 - All with different performance characteristics
- Best choice depends on the situation
 - Implement all alternatives
 - Let the query optimizer choose at run-time

Notation

- Relations: R, S
- Tuples: r, s
- Number of tuples: $|R|, |S|$
- Number of disk blocks: $B(R), B(S)$
- Number of memory blocks available: M
- Cost metric
 - Number of I/O's
 - Memory requirement
Table scan

- Scan table R and process the query
 - Selection over R
 - Projection of R without duplicate elimination
- I/O’s: $B(R)$
 - Trick for selection: stop early if it is a lookup by key
- Memory requirement: 2 (double buffering)
- Not counting the cost of writing the result out
 - Same for any algorithm!
 - Maybe not needed—results may be pipelined into another operator

Nested-loop join

- $R \bowtie S$
- For each block of R, and for each r in the block:
 - For each block of S, and for each s in the block:
 - Output rs if p evaluates to true over r and s
- R is called the outer table; S is called the inner table
- I/O’s:
- Memory requirement: 3 (double buffering)
- Improvement: block-based nested-loop join
 - I/O’s:
 - Memory requirement:

More improvements of nested-loop join

- Stop early
 - If the key of the inner table is being matched
 - May reduce half of the I/O’s
- Make use of available memory
 - Stuff memory with as much of R as possible, stream S by,
 and join every S tuple with all R tuples in memory
 - I/O’s: $B(R) + \lceil B(R) / (M - 2) \rceil \cdot B(S)$
 - Or, roughly: $B(R) \cdot B(S) / M$
 - Memory requirement: M (as much as possible)
External merge sort

Problem: sort R, but R does not fit in memory

- Pass 0: read M blocks of R at a time, sort them, and write out a level-0 run
 - There are $\left\lceil \frac{B(R)}{M} \right\rceil$ level-0 sorted runs
- Pass i: merge $(M - 1)$ level-$(i-1)$ runs at a time, and write out a level-i run
 - $(M - 1)$ memory blocks for input, 1 to buffer output
 - # of level-i runs = $\left\lceil \frac{\text{# of level-} (i-1) \text{ runs}}{M - 1} \right\rceil$
- Final pass produces 1 sorted run

Example of external merge sort

- Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
- Pass 0
 - 1, 7, 4 → 1, 4, 7
 - 5, 2, 8 → 2, 5, 8
 - 9, 6, 3 → 3, 6, 9
- Pass 1
 - 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
 - 3, 6, 9
- Pass 2 (final)
 - 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9

Performance of external merge sort

- Number of passes: $\lceil \log_{M-1} \left(\frac{B(R)}{M} \right) \rceil + 1$
- I/O’s
 - Multiply by $2 \cdot B(R)$: each pass reads the entire relation once and writes it once
 - Subtract $B(R)$ for the final pass
 - Roughly, this is $O\left(B(R) \cdot \log_{M} B(R) \right)$
- Memory requirement: M (as much as possible)
Some tricks for sorting

- Double buffering
 - Allocate an additional block for each run
 - Trade-off: smaller fan-in (more passes)
- Blocked I/O
 - Instead of reading/writing one disk block at time, read/write a bunch ("cluster")
 - More sequential I/O's
 - Trade-off: larger cluster ↔ smaller fan-in (more passes)

Sort-merge join

- \(R \bowtie_{R.A < S.B} S \)
- Sort \(R \) and \(S \) by their join attributes, and then merge
 \(r, s = \) the first tuples in sorted \(R \) and \(S \)
 Repeat until one of \(R \) and \(S \) is exhausted:
 - If \(r.A > s.B \) then \(s = \) next tuple in \(S \)
 - else if \(r.A < s.B \) then \(r = \) next tuple in \(R \)
 - else output all matching tuples, and \(r, s = \) next in \(R \) and \(S \)
- I/O’s: sorting + \(2 \cdot B(R) \) + \(2 \cdot B(S) \)
 - In most cases (e.g., join of key and foreign key)
 - Worst case is

Example

\[
\begin{align*}
R: & \\
\rightarrow r_1.A & = 1 & \rightarrow s_1.B & = 1 & r_1 \cdot s_1 \\
\rightarrow r_2.A & = 3 & \rightarrow s_2.B & = 2 & r_2 \cdot s_3 \\
\rightarrow r_3.A & = 3 & \rightarrow s_3.B & = 3 & r_3 \cdot s_4 \\
\rightarrow r_4.A & = 5 & s_4.B & = 3 & r_4 \cdot s_5 \\
\rightarrow r_5.A & = 7 & s_5.B & = 8 & r_5 \cdot s_4 \\
\rightarrow r_6.A & = 7 & \rightarrow s_6.B & = 8 & \rightarrow r_7 \cdot s_5 \\
\rightarrow r_7.A & = 8 &
\end{align*}
\]
Optimization of SMJ

- Idea: combine join with the merge phase of merge sort
- Sort: produce sorted runs of size M for R and S
- Merge and join: merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated.

![Diagram of disk, memory, and join process]

Performance of two-pass SMJ

- I/O's: $3 \cdot (B(R) + B(S))$
- Memory requirement
 - To be able to merge in one pass, we should have enough memory to accommodate one block from each run: $M > B(R) / M + B(S) / M$
 - $M > \sqrt{B(R) + B(S)}$

Other sort-based algorithms

- Union (set), difference, intersection
 - More or less like SMJ
- Duplication elimination
 - External merge sort
 - Eliminate duplicates in sort and merge
- GROUP BY and aggregation
 - External merge sort
 - Produce partial aggregate values in each run
 - Combine partial aggregate values during merge
 - Partial aggregate values don't always work though...
Hash join

- \(R \bowtie_{A,B} S \)
- **Main idea**
 - Partition \(R \) and \(S \) by hashing their join attributes, and then consider corresponding partitions of \(R \) and \(S \).
 - If \(r.A \) and \(s.B \) get hashed to different partitions, they don’t join.

Partitioning phase

- **Partition** \(R \) and \(S \) according to the same hash function on their join attributes.

Probing phase

- **Read in each partition of** \(R \), stream in the corresponding partition of \(S \), join.
 - Typically build a hash table for the partition of \(R \).
 - Not the same hash function used for partition, of course!
Performance of hash join

- I/O's: 3 ⋅ (B(R) + B(S))
- Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of R: \(M - 1 \geq B(R) / (M - 1) \)
 - \(M > \sqrt{B(R)} \)
 - We can always pick R to be the smaller relation, so: \(M > \sqrt{\min(B(R), B(S))} \)

Hash join tricks

- What if a partition is too large for memory?
 - Read it back in and partition it again!
 - See the duality in multi-pass merge sort here?

Hash join versus SMJ (Assuming two-pass)

- I/O's: same
- Memory requirement: hash join is lower
 - \(\sqrt{\min(B(R), B(S))} < \sqrt{B(R) + B(S)} \)
 - Hash join wins when two relations have very different sizes
- Other factors
 - Hash join performance depends on the quality of the hash
 - Might not get evenly sized buckets
 - SMJ can be adapted for inequality join predicates
 - SMJ wins if R and/or S are already sorted
 - SMJ wins if the result needs to be in sorted order
What about nested-loop join?

- May be best if many tuples join
 - Example: non-equality joins that are not very selective
- Necessary for black-box predicates
 - Example: \(\cdots \text{WHERE } \text{user
defined_pred}(R.A, S.B) \)

Other hash-based algorithms

- Union (set), difference, intersection
 - More or less like hash join
- Duplicate elimination
 - Check for duplicates within each partition/bucket
- \text{GROUP BY} and aggregation
 - Apply the hash functions to \text{GROUP BY} attributes
 - Tuples in the same group must end up in the same partition/bucket
 - Keep a running aggregate value for each group

Duality of sort and hash

- Divide-and-conquer paradigm
 - Sorting: physical division, logical combination
 - Hashing: logical division, physical combination
- Handling very large inputs
 - Sorting: multi-level merge
 - Hashing: recursive partitioning
- I/O patterns
 - Sorting: sequential write, random read (merge)
 - Hashing: random write, sequential read (partition)
Selection using index

- Equality predicate: $\sigma_{A = v}(R)$
 - Use an ISAM, B$^+$-tree, or hash index on $R(A)$
- Range predicate: $\sigma_{A > v}(R)$
 - Use an ordered index (e.g., ISAM or B$^+$-tree) on $R(A)$
 - Hash index is not applicable
- Indexes other than those on $R(A)$ may be useful
 - Example: B$^+$-tree index on $R(A, B)$
 - How about B$^+$-tree index on $R(B, A)$?

Index versus table scan

Situations where index clearly wins:
- Index-only queries which do not require retrieving actual tuples
 - Example: $\pi_A(\sigma_{A > v}(R))$
- Primary index clustered according to search key
 - One lookup leads to all result tuples in their entirety

Index versus table scan (cont’d)

BUT(!):
- Consider $\sigma_{A > v}(R)$ and a secondary, non-clustered index on $R(A)$
 - Need to follow pointers to get the actual result tuples
 - Say that 20% of R satisfies $A > v$
 - Could happen even for equality predicates
 - I/O's for index-based selection: lookup + 20% $|R|$
 - I/O's for scan-based selection: $B(R)$
 - Table scan wins if a block contains more than 5 tuples
Index nested-loop join

- $R \bowtie_{R.A = S.B} S$
- Idea: use the value of $R.A$ to probe the index on $S(B)$
- For each block of R, and for each r in the block:
 - Use the index on $S(B)$ to retrieve s with $s.B = r.A$
 - Output rs
- I/O's: $B(R) + |R| \cdot \text{(index lookup)}$
 - Typically, the cost of an index lookup is 2-4 I/O’s
 - Beats other join methods if $|R|$ is not too big
 - Better pick R to be the smaller relation
- Memory requirement: 2

Zig-zag join using ordered indexes

- $R \bowtie_{R.A = S.B} S$
- Idea: use the ordering provided by the indexes on $R(A)$ and $S(B)$ to eliminate the sorting step of sort-merge join
- Trick: use the larger key to probe the other index
 - Possibly skipping many keys that don’t match

Summary of tricks

- Scan
 - Selection, duplicate-preserving projection, nested-loop join
- Sort
 - External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, GROUP BY and aggregation
- Hash
 - Hash join, union (set), difference, intersection, duplicate elimination, GROUP BY and aggregation
- Index
 - Selection, index nested-loop join, zig-zag join