Web Crawling, Indexing, and Ranking

CPS 196.3
Introduction to Database Systems

Outline

- Crawling
 - Download Web pages
- Indexing
 - Index downloaded pages to facilitate searches
- Ranking
 - Rank result pages so that the most relevant ones are returned first

Crawling the Web

- Start with an initial set of URL's, and place them in a priority queue
- Repeat until some stopping condition
 - Pick a URL from the queue
 - Download the page
 - Extract the URL's on the downloaded page
 - Place newly discovered URL's in the queue

Prioritizing crawl

- What pages should the crawler download first (so that most of the “important” pages can be downloaded in the shortest amount of time)?
- Possible importance/ordering metrics
 - Interest driven (useful for focused crawls)
 - Textual similarity to a driving query
 - Relevance to a topic
 - Location driven (based on URL)
 - Example: .com is more useful than .org
 - Example: …/home/… is more useful than …/tmp/…
 - Popularity driven
 - Backlink count
 - Google's PageRank

Evaluating ordering strategies

 - Backlink count is the importance metric
 - But PageRank is still the best ordering metric!

Refresh strategies

- How should the crawler refresh downloaded pages?
- Metrics
 - Freshness: 1 if up to date, 0 otherwise
 - Age: 0 if up to date, (current time – modification time) otherwise
- Possible strategies
 - Uniform: revisit all pages at the same frequency regardless of how often they change
 - Proportional: revisit a page proportionally more often as it changes more often
 - Surprise: Uniform beats proportional as long as changes to each page follow a Poisson process (a sequence of random events that happen independently with fixed rate over time)
Example of uniform versus proportional

\[f_1 + f_2 = 4 \]

- \(f_1 = 3, f_2 = 1 \): expected freshness 1/2 and 1/2
- \(f_1 = 2, f_2 = 2 \): expected freshness 3/8 and 3/4
- Uniform is better!

Optimal refresh strategy

It is not worthwhile trying to keep up with the pages that change too frequently relative to the resources available (Cho & Garcia-Molina, “The Evolution of the Web and Implications for an Incremental Crawler,” VLDB, 2000)

Indexing Web pages

All pages

<table>
<thead>
<tr>
<th>All words</th>
<th>Page 1</th>
<th>Page 2</th>
<th>Page 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>“cat”</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>“dog”</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>“database”</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>“search”</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Inverted lists: store the matrix by rows
- Signature files: store the matrix by columns
- With compression, of course!

Inverted lists

- For each word, store an inverted list
 - \((word, page-id-list)\)
 - \{“database”, \{3, 7, 142, 857, …\}\}
 - \{“search”, \{3, 9, 192, 512, …\}\}
- A vocabulary index for looking up inverted list by word
- Example: find pages containing “database” and “search”
 - Use the vocabulary index to find the two inverted lists
 - Return the page ID’s in the intersection

Signature files

- For each page, store a \(w\)-bit signature
- Each word is hashed into a \(w\)-bit value, with only \(s\) \(< w\) bits turned on
- Signature is computed by taking the bit-wise OR of the hash values of all words on the page

\[
\begin{align*}
\text{hash(“database”)} &= 0110 \\
\text{hash(“cat”)} &= 1100 \\
\text{hash(“dog”)} &= 0010 \\
\end{align*}
\]

- Some false positives; no false negatives

Bit-sliced signature files

- Motivation
 - To check if a page contains a word, we only need to check the bits that are set in the word’s hash value
 - So why bother retrieving all \(w\) bits of the signature?
- Instead of storing \(w\) signature files, store \(w\) bit slices
- Only check the slices that correspond to the set bits in the word’s hash value
- Start from the sparse slices

Starting to look like an inverted list again!
Inverted lists versus signature files

- Inverted lists are better for most purposes (Zobel et al., "Inverted Files versus Signature Files for Text Indexing." TODS, 1998)
- Problems of signature files
 - False positives
 - Hard to use because i, w, and the hash function need tuning to work well
 - Long pages will likely have mostly 1’s in signatures
 - Common words will create mostly 1’s for their slices
- Saving grace of signature files
 - Good for lots of search terms
 - Good for computing similarity of pages

Ranking result pages

- A single search may return many pages
 - A user will not look at all result pages
 - Complete result may be unnecessary
 - Result pages need to be ranked
- Possible ranking criteria
 - Based on content
 - Number of occurrences of the search terms
 - Similarity to the query text
 - Based on link structure
 - Backlink count
 - PageRank
 - And more…

Textual similarity

- Vocabulary: $[w_1, \ldots, w_n]$
- IDF (Inverse Document Frequency): $[f_1, \ldots, f_n]$
 - $f_i = 1 / \text{the number of times } w_i \text{ appears on the Web}$
- Significance of words on page p: $[p_1, f_1, \ldots, p_n, f_n]$
 - p_i is the number of times w_i appears on p
- Textual similarity between two pages p and q is defined to be $\langle p_1 f_1, \ldots, p_n f_n \rangle \cdot \langle q_1 f_1, \ldots, q_n f_n \rangle = p_1 q_1 f_1^2 + \ldots + p_n q_n f_n^2$
 - q could be the query text

Why weight significance by IDF?

- "the" occurs frequently on the Web, so its occurrence on a particular page should be considered less significant
- "engine" occurs infrequently on the Web, so its occurrence on a particular page should be considered more significant
- Without IDF weighting, the similarity measure would be dominated by the so-called stop words

Problems with content-based ranking

- Many pages containing search terms may be of poor quality or irrelevant
 - Example: a page with just a line "search engine"
- Many high-quality or relevant pages do not even contain the search terms
 - Example: Google homepage
- Page containing more occurrences of the search terms are ranked higher; spamming is easy
 - Example: a page with line "search engine" repeated many times

Backlink

- A page with more backlinks is ranked higher
- Intuition: Each backlink is a "vote" for the page’s importance
- Based on local link structure; still easy to spam
 - Create lots of pages that point to a particular page
Google’s PageRank

- Main idea: Pages pointed by high-ranking pages are ranked higher
 - Definition is recursive by design
 - Based on global link structure; hard to spam
- Naïve PageRank
 - \(N(p) \): number of outgoing links from page \(p \)
 - \(B(p) \): set of pages that point to \(p \)
 \[
 \text{PageRank}(p) = \sum_{q \in B(p)} \left(\frac{\text{PageRank}(q)}{N(q)} \right)
 \]
 - Each page \(p \) gets a boost of its importance from each page that points to \(p \)
 - Each page \(q \) evenly distributes its importance to all pages that \(q \) points to

Calculating naïve PageRank

- Initially, set all PageRank’s to 1; then evaluate
 \[
 \text{PageRank}(p) \leftarrow \frac{\sum_{q \in B(p)} (\text{PageRank}(q)/N(q))}{1 - d} + (1 - d)
 \]

Random surfer model

- A random surfer
 - Starts with a random page
 - Randomly selects a link on the page to visit next
 - Never uses the “back” button

- PageRank(\(p \)) measures the probability that a random surfer visits page \(p \)

Problems with the naïve PageRank

- Dead end: a page with no outgoing links
 - A dead end causes all importance to “leak” eventually out of the Web
- Spider trap: a group of pages with no links out of the group
 - A spider trap will eventually accumulate all importance of the Web

Practical PageRank

- \(d \): decay factor
 - PageRank(\(p \)) = \(d \cdot \sum_{q \in B(p)} (\text{PageRank}(q)/N(q)) + (1 - d) \)
 - Intuition in the random surfer model
 - A surfer occasionally gets bored and jump to a random page on the Web instead of following a random link on the current page

Beyond this lecture

- Inverted lists in practice contain a lot of context information
- PageRank is not the final ranking
 - Type-weight: depends on the type of the occurrence
 - For example, large font weights more than small font
 - Count-weight: depends on the number of occurrences
 - Increases linearly first but then tapers off
 - For multiple search terms, nearby occurrences are matched together and a proximity measure is computed
 - Closer proximity weights more
End-semester logistics

- Project demo: Tuesday and Thursday afternoons
 - Sign-up sheet going around now
- Optional Problem Set #2
 - Entirely optional
 - Solution will be posted on Wednesday midnight
 - If you turn it in before the solution is posted, you can use its grade to replace your lowest homework grade so far
- Final: 7-10pm Friday (December 13)
 - Everything up to today’s lecture, with a focus on the materials covered by Homework #3, #4, and Optional Problem Set #2
 - Open book, open notes

Evaluations

- Instructor name: Jun Yang
- Course number: 3282
- Instructor number: 1
- Major code number
 - Computer science: 12
 - Ask me about other majors

- Return envelope to Susan in D315