Relational Database Design

CPS 216
Advanced Database Systems

Announcements (January 15)

- Review for Codd paper due tonight
 - Follow instructions on course Web site to write reviews and post on H2O
- Reading assignment for next week (Ailamaki et al., VLDB 2001) has been posted
 - Due next Wednesday night
 - Hunt for related/follow-up work too!
- Homework #1 assigned today
 - Look for an email regarding your DB2 account
 - Due February 3 (in 2 ½ weeks)
 - Start early!
- Course project will be assigned next week

Database (schema) design

- Understand the real-world domain being modeled
- Specify it using a database design model
 - Design models are especially convenient for schema design, but are not necessarily implemented by DBMS
 - Popular ones include
 - Entity/Relationship (E/R) model
 - Object Definition Language (ODL)
- Translate the design to the data model of DBMS
 - Relational, XML, object-oriented, etc.
- Apply database design theory to check the design
- Create DBMS schema
Entity-relationship (E/R) model

- Historically very popular
 - Primarily a design model; not implemented by any major DBMS nowadays
- Can think of as a “watered-down” object-oriented design model
- E/R diagrams represent designs

E/R example

- Entity: a “thing,” like a record or an object
- Entity set (rectangle): a collection of things of the same type, like a relation of tuples or a class of objects
- Relationship: an association among two or more entities
- Relationship set (diamond): a set of relationships of the same type; an association among two or more entity sets
- Attributes (ovals): properties of entities or relationships, like attributes of tuples or objects

ODL (Object Definition Language)

- Standardized by ODMG (Object Data Management Group)
 - Comes with a declarative query language OQL (Object Query Language)
 - Implemented by OODBMS (Object-Oriented DataBase Management Systems)
- Object oriented
- Based on C++ syntax
- Class declarations represent designs
ODL example

class Student {
 attribute integer SID;
 attribute string name;
 relationship Set<Course> enrolledIn inverse Course::students;
};
class Course {
 attribute string CID;
 attribute string title;
 relationship Set<Student> students inverse Student::enrolledIn;
};

- Easy to map them to C++ classes
 - ODL attributes correspond to attributes of objects; complex types are allowed
 - ODL relationships can be mapped to pointers to other objects (e.g., Set<Course> → set of pointers to objects of Course class)

Not covered in this lecture

- E/R and ODL design
- Translating E/R and ODL designs into relational designs
 - Reference book (GMUW) has all the details
- Next: relational design theory

Relational model: review

- A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
- Each attribute has a domain (or type)
- Each relation contains a set of tuples (or rows)
Keys

- A set of attributes K is a key for a relation R if
 - In no instance of R will two different tuples agree on all attributes of K
 - That is, K is a “tuple identifier”
 - No proper subset of K satisfies the above condition
 - That is, K is minimal
- Example: Student (SID, name, age, GPA)
 - SID is a key of Student
 - \{SID, name\} is not a key (not minimal)

Schema vs. data

<table>
<thead>
<tr>
<th>Student</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>name</td>
<td>age</td>
<td>GPA</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>1.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

- Is name a key of Student?

More examples of keys

- Enroll (SID, CID)
- Address (street_address, city, state, zip)
- Course (CID, title, room, day_of_week, begin_time, end_time)
Usage of keys

- More constraints on data, fewer mistakes
- Look up a row by its key value
 - Many selection conditions are “key = value”
- “Pointers”
 - Example: \textit{Enroll} (\textit{SID}, \textit{CID})
 - \textit{SID} is a key of \textit{Student}
 - \textit{CID} is a key of \textit{Course}
 - An \textit{Enroll} tuple “links” a \textit{Student} tuple with a \textit{Course} tuple
 - Many join conditions are “key = key value stored in another table”

Motivation for a design theory

- Why is this design bad?
 - This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking
- Why is redundancy bad?
- How about a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms

Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes of Y

\begin{center}
\begin{tabular}{ccc}
SID & Name & CID \\
142 & Bart & CPS214 \\
142 & Karl & CPS214 \\
857 & Lisa & CPS230 \\
... & ... & ... \\
\end{tabular}
\end{center}

- Must be b
- Could be anything
FD examples

Address (street_address, city, state, zip)

Keys redefined using FD’s

A set of attributes K is a key for a relation R if
- $K \rightarrow$ all (other) attributes of R
 - That is, K is a "super key"
- No proper subset of K satisfies the above condition
 - That is, K is minimal

Reasoning with FD’s

Given a relation R and a set of FD’s \mathcal{F}
- Does another FD follow from \mathcal{F}?
 - Are some of the FD’s in \mathcal{F} redundant (i.e., they follow from the others)?
- Is K a key of R?
 - What are all the keys of R?
Attribute closure

- Given \(R \), a set of FD's \(\mathcal{F} \) that hold in \(R \), and a set of attributes \(Z \) in \(R \):
 - The closure of \(Z \) (denoted \(Z^+ \)) with respect to \(\mathcal{F} \) is the set of all attributes functionally determined by \(Z \)
- Algorithm for computing the closure
 - Start with closure = \(Z \)
 - If \(X \to Y \) is in \(\mathcal{F} \) and \(X \) is already in the closure, then also add \(Y \) to the closure
 - Repeat until no more attributes can be added

A more complex example

\(\text{StudentGrade (SID, name, email, CID, grade)} \)

- Not a good design, and we will see why later

Example of computing closure

- \(\mathcal{F} \) includes:
 - \(\text{SID} \to \text{name, email} \)
 - \(\text{email} \to \text{SID} \)
 - \(\text{SID, CID} \to \text{grade} \)
- \(\{ \text{CID, email} \}^+ = ? \)
 - \(\text{email} \to \text{SID} \)
 - Add \(\text{SID} \), closure is now \(\{ \text{CID, email, SID} \} \)
 - \(\text{SID} \to \text{name, email} \)
 - Add \(\text{name, email} \), closure is now \(\{ \text{CID, email, SID, name} \} \)
 - \(\text{SID, CID} \to \text{grade} \)
 - Add \(\text{grade} \), closure is now all the attributes in \(\text{StudentGrade} \)
Using attribute closure

Given a relation \(R \) and set of FD’s \(F \)

- Does another FD \(X \rightarrow Y \) follow from \(F \)?
 - Compute \(X^+ \) with respect to \(F \)
 - If \(Y \subseteq X^+ \), then \(X \rightarrow Y \) follow from \(F \)
- Is \(K \) a key of \(R \)?
 - Compute \(K^+ \) with respect to \(F \)
 - If \(K^+ \) contains all the attributes of \(R \), \(K \) is a super key
 - Still need to verify that \(K \) is minimal (how?)

Useful rules of FD’s

- Armstrong’s axioms
 - Reflexivity: If \(Y \subseteq X \), then \(X \rightarrow Y \)
 - Augmentation: If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)
 - Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)
- Rules derived from axioms
 - Splitting: If \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)
 - Combining: If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)

Non-key FD’s

- Consider a non-trivial FD \(X \rightarrow Y \) where \(X \) is not a super key
 - Since \(X \) is not a super key, there are some attributes (say \(Z \)) that are not functionally determined by \(X \)

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

The fact that \(a \) is always associated with \(b \) is recorded in multiple rows: redundancy!
Example of redundancy

- **StudentGrade** (SID, name, email, CID, grade)
- SID \(\rightarrow\) name, email

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS216</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS214</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td>CPS216</td>
<td>B+</td>
</tr>
<tr>
<td></td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS216</td>
<td>A+</td>
</tr>
<tr>
<td></td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td>CPS214</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Decomposition

- Eliminates redundancy
- To get back to the original relation:

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS216</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS214</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td>CPS216</td>
<td>B+</td>
</tr>
<tr>
<td></td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS216</td>
<td>A+</td>
</tr>
<tr>
<td></td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td>CPS214</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Unnecessary decomposition

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed, and now SID is stored twice!
Bad decomposition

- Association between CID and grade is lost
- Join returns more rows than the original relation

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition

An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 - That is, all FDs follow from “key \rightarrow other attributes”

- When to decompose
 - As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation
 - Then it is guaranteed to be a correct decomposition!
BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

BCNF decomposition example

- StudentGrade (SID, name, email, CID, grade)
 - BCNF violation: $SID \rightarrow$ name, email
- Student (SID, name, email)
 - BCNF
- Grade (SID, CID, grade)
 - BCNF

Another example

- StudentGrade (SID, name, email, CID, grade)
 - BCNF violation: email \rightarrow SID
- StudentID (email, SID)
 - BCNF
- StudentGrade' (email, name, CID, grade)
 - BCNF violation: email \rightarrow name
- StudentName (email, name)
 - BCNF
- Grade (email, CID, grade)
 - BCNF
Recap

- Functional dependencies: generalization of keys
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method of removing redundancies due to FD's
- BCNF: schema in this normal form has no redundancy due to FD's

- Not covered in this lecture: many other types of dependencies (e.g., MVD) and normal forms (e.g., 4NF)
 - GMUW has all the details
 - Relational design theory was a big research area in the 1970's, but there is not much going on now