Announcements (February 17)

- Reading assignment for this week
 - Variant indexes (due Wednesday)
- Homework #1 is being graded
 - Sample solution available outside my office
- Homework #2 due February 26
- Midterm and course project proposal in 2½ weeks

Overview

- Many different ways of processing the same query
 - Scan? Sort? Hash? Use an index?
 - All with different performance characteristics
- Best choice depends on the situation
 - Implement all alternatives
 - Let the query optimizer choose at run-time

Notation

- Relations: R, S
- Tuples: r, s
- Number of tuples: $|R|$, $|S|$
- Number of disk blocks: $B(R)$, $B(S)$
- Number of memory blocks available: M
- Cost metric
 - Number of I/O's
 - Memory requirement

Table scan

- Scan table R and process the query
 - Selection over R
 - Projection of R without duplicate elimination
- I/O's: $B(R)$
 - Trick for selection: stop early if it is a lookup by key
- Memory requirement: 2 (double buffering)
- Not counting the cost of writing the result out
 - Same for any algorithm!
 - Maybe not needed—results may be pipelined directly into another operator

Nested-loop join

- $R \bowtie S$
- For each block of R, and for each r in the block:
 - For each block of S, and for each s in the block:
 - Output r if p evaluates to true over r and s
 - R is called the outer table; S is called the inner table
- I/O's: $B(R) + |R| \cdot B(S)$
- Memory requirement: 4 (double buffering)
- Improvement: block-based nested-loop join
 - For each block of R, and for each block of S:
 - For each r in the R block, and for each s in the S block: …
 - I/O's: $B(R) + B(R) \cdot B(S)$
 - Memory requirement: same as before
More improvements of nested-loop join

- Stop early
 - If the key of the inner table is being matched
 - May reduce half of the I/O’s (less for block-based)
- Make use of available memory
 - Stuff memory with as much of \(R \) as possible, stream \(S \) by, and join every \(S \) tuple with all \(R \) tuples in memory
 - I/O’s: \(B(R) + \left\lceil \frac{B(R)}{(M - 2)} \right\rceil \cdot B(S) \)
 - Or, roughly: \(B(R) \cdot B(S) / M \)
 - Memory requirement: \(M \) (as much as possible)

External merge sort

Problem: sort \(R \), but \(R \) does not fit in memory
- Pass 0: read \(M \) blocks of \(R \) at a time, sort them, and write out a level-0 run
 - There are \(\left\lceil \frac{B(R)}{M} \right\rceil \) level-0 sorted runs
- Pass \(i \): merge \((M - 1) \) level-(\(i-1 \)) runs at a time, and write out a level-\(i \) run
 - \((M - 1) \) memory blocks for input, 1 to buffer output
 - \# of level-\(i \) runs = \(\left\lfloor \frac{\# \text{ of level-(}\(i-1 \)\text{) runs}}{(M - 1)} \right\rfloor \)
- Final pass produces 1 sorted run

Example of external merge sort

- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3, 0
- Each block holds one number, and memory has 3 blocks
- Pass 0
 - 1, 7, 4 → 1, 4, 7
 - 5, 2, 8 → 2, 5, 8
 - 9, 6, 3 → 3, 6, 9
 - 0 → 0
- Pass 1
 - 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
 - 3, 6, 9 + 0 → 0, 3, 6, 9
- Pass 2 (final)
 - 1, 2, 4, 5, 7, 8 + 0, 3, 6, 9 → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Performance of external merge sort

- Number of passes: \(\left\lceil \log_{M-1} \left\lceil \frac{B(R)}{M} \right\rceil \right\rfloor + 1 \)
- I/O’s
 - Multiply by \(2 \cdot B(R) \): each pass reads the entire relation once and writes it once
 - Subtract \(B(R) \) for the final pass
 - Roughly, this is \(O(B(R) \cdot \log M B(R)) \)
- Memory requirement: \(M \) (as much as possible)

Some tricks for sorting

- Double buffering
 - Allocate an additional block for each run
 - Trade-off: smaller fan-in (more passes)
- Blocked I/O
 - Instead of reading/writing one disk block at time, read/write a bunch (“cluster”)
 - Trade-off: more sequential I/O’s ↔ smaller fan-in (more passes)
- Dealing with input whose size is not an exact power of fan-in

Internal sort algorithm

- Quicksort
 - Fast
- Replacement selection
 - One block for input, one for output, rest for a heap
 - Fill the heap with input records
 - Find the smallest record in the heap that is no less than the largest record in the current run
 - If that exists, move it to the output buffer, and move a new record from input buffer into the heap
 - If that does not exist, flush output and start a new run
 - Slower than quicksort, but produces longer runs (twice the size of memory if records are in random order)
Sort-merge join

- $R \bowtie_{R.A = S.B} S$
- Sort R and S by their join attributes, and then merge
- $r, s =$ the first tuples in sorted R and S
- Repeat until one of R and S is exhausted:
 - If $r.A > s.B$ then $s =$ next tuple in S
 - else if $r.A < s.B$ then $r =$ next tuple in R
 - else output all matching tuples, and
 - $r, s =$ next in R and S
- I/O's: sorting + 2 $B(R)$ + 2 $B(S)$
 - In most cases (e.g., join of key and foreign key)
 - Worst case is $B(R) \cdot B(S)$: everything joins

Example

$R: \quad S: \quad R \bowtie_{R.A = S.B} S:$

- $r_1.A = 1 \quad s_1.B = 1 \quad r_1 s_1$
- $r_2.A = 3 \quad s_2.B = 2 \quad r_2 s_3$
- $r_3.A = 3 \quad s_3.B = 3 \quad r_3 s_4$
- $r_4.A = 5 \quad s_4.B = 3 \quad r_5 s_3$
- $r_5.A = 7 \quad s_5.B = 8 \quad r_5 s_4$
- $r_6.A = 7 \quad s_6.B = 8 \quad r_7 s_5$

Optimization of SMJ

- Idea: combine join with the merge phase of merge sort
- Sort: produce sorted runs of size M for R and S
- Merge and join: merge the runs of R, merge the runs of S, and merge-join the result streams as they are generated!

Performance of two-pass SMJ

- I/O's: $3 \cdot (B(R) + B(S))$
- Memory requirement
 - To be able to merge in one pass, we should have enough memory to accommodate one block from each run: $M > B(R) / M + B(S) / M$
 - $M > \sqrt{B(R) + B(S)}$

Other sort-based algorithms

- Union (set), difference, intersection
 - More or less like SMJ
- Duplication elimination
 - External merge sort
 - Eliminate duplicates in sort and merge
- GROUP BY and aggregation
 - External merge sort
 - Produce partial aggregate values in each run
 - Combine partial aggregate values during merge
 - Partial aggregate values don’t always work though
 - Examples: SUM(DISTINCT ...), MEDIAN(…)

Hash join

- $R \bowtie_{R.A = S.B} S$
- Main idea
 - Partition R and S by hashing their join attributes, and then consider corresponding partitions of R and S
 - If $r.A$ and $s.B$ get hashed to different partitions, they don’t join
Partitioning phase

- Partition R and S according to the same hash function on their join attributes

![Diagram of Partitioning phase]

Probing phase

- Read in each partition of R, stream in the corresponding partition of S, join
 - Typically build a hash table for the partition of R
 - Not the same hash function used for partition, of course!

![Diagram of Probing phase]

Performance of hash join

- I/O’s: $3 \cdot (B(R) + B(S))$
- Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of R: $M - 1 \geq B(R) / (M - 1)$
 - $M > \sqrt{B(R)}$
 - We can always pick R to be the smaller relation, so: $M > \sqrt{\min(B(R), B(S))}$

![Diagram of Performance of hash join]

Hash join tricks

- What if a partition is too large for memory?
 - Read it back in and partition it further!
 - See the duality in multi-pass merge sort here?

![Diagram of Hash join tricks]

Hybrid hash join

- What if there is extra memory available?
 - Use it to avoid writing/re-reading partitions
 - Of both R and S!

![Diagram of Hybrid hash join]

Hash join versus SMJ

(Assuming two-pass)
- I/O’s: same
- Memory requirement: hash join is lower
 - $\sqrt{\min(B(R), B(S))} < \sqrt{B(R) + B(S)}$
 - Hash join wins big when two relations have very different sizes
- Other factors
 - Hash join performance depends on the quality of the hash
 - Might not get evenly sized buckets
 - SMJ can be adapted for inequality join predicates
 - SMJ wins if R and/or S are already sorted
 - SMJ wins if the result needs to be in sorted order

![Diagram of Hash join versus SMJ]
What about nested-loop join?

- May be best if many tuples join
 - Example: non-equality joins that are not very selective
- Necessary for black-box predicates
 - Example: \(\ldots \text{WHERE user-defined _pred}(R.A, S.B) \)

Other hash-based algorithms

- Union (set), difference, intersection
 - More or less like hash join
- Duplicate elimination
 - Check for duplicates within each partition/bucket
- GROUP BY and aggregation
 - Apply the hash functions to GROUP BY attributes
 - Tuples in the same group must end up in the same partition/bucket
 - Keep a running aggregate value for each group

Duality of sort and hash

- Divide-and-conquer paradigm
 - Sorting: physical division, logical combination
 - Hashing: logical division, physical combination
- Handling very large inputs
 - Sorting: multi-level merge
 - Hashing: recursive partitioning
- I/O patterns
 - Sorting: sequential write, random read (merge)
 - Hashing: random write, sequential read (partition)