Query Processing with Indexes

CPS 216
Advanced Database Systems

Announcements (February 19)

- Reading assignment for next week
 - Buffer management (due next Wednesday)
- Homework #1 has been graded
 - Grades will posted on Blackboard
 - Sample solution available outside my office
 - Bugs will be corrected in email
- Homework #2 due next Thursday
- Midterm and course project proposal in two weeks

Review

- Many different ways of processing the same query
 - Scan (e.g., nested-loop join)
 - Sort (e.g., sort-merge join)
 - Hash (e.g., hash join)
 - Index

Selection using index

- Equality predicate: $\sigma_A = v (R)$
 - Use an ISAM, B+-tree, or hash index on $R(A)$
- Range predicate: $\sigma_A > v (R)$
 - Use an ordered index (e.g., ISAM or B+-tree) on $R(A)$
 - Hash index is not applicable

- Indexes other than those on $R(A)$ may be useful
 - Example: B+-tree index on $R(A, B)$
 - How about B+-tree index on $R(B, A)$?

Index versus table scan

Situations where index clearly wins:

- Index-only queries which do not require retrieving actual tuples
 - Example: $\pi_A (\sigma_A > v (R))$
- Primary index clustered according to search key
 - One lookup leads to all result tuples in their entirety

Index versus table scan (cont’d)

BUT(!):

- Consider $\sigma_A > v (R)$ and a secondary, non-clustered index on $R(A)$
 - Need to follow pointers to get the actual result tuples
 - Say that 20% of R satisfies $A > v$
 - Could happen even for equality predicates
 - I/O’s for index-based selection: lookup + 20% $|R|$
 - I/O’s for scan-based selection: $B(R)$
 - Table scan wins if a block contains more than 5 tuples
Index nested-loop join

- \(R \bowtie_{R.A = S.B} S \)
- Idea: use the value of \(R.A \) to probe the index on \(S(B) \)
- For each block of \(R \), and for each \(r \) in the block:
 - Use the index on \(S(B) \) to retrieve \(s \) with \(s.B = r.A \)
 - Output \(rs \)
- I/O's: \(B(R) + |R| \cdot (\text{index lookup}) \)
 - Typically, the cost of an index lookup is 2-4 I/O's
 - Beats other join methods if \(|R| \) is not too big
 - Better pick \(R \) to be the smaller relation
- Memory requirement: 2

Tricks for index nested-loop join

- Goal: reduce \(|R| \cdot (\text{index lookup}) \)
- For tree-based indexes, keep the upper part of the tree in memory
- For extensible hash index, keep the directory in memory
- Sort or partition \(R \) according to the join attribute
 - Improves locality: subsequent lookup may follow the same path or go to the same bucket

Zig-zag join using ordered indexes

- \(R \bowtie_{R.A = S.B} S \)
- Idea: use the ordering provided by the indexes on \(R(A) \) and \(S(B) \) to eliminate the sorting step of sort-merge join
- Trick: use the larger key to probe the other index
 - Possibly skipping many keys that do not match

Search key values \(\times \) tuples

<table>
<thead>
<tr>
<th>Search key values</th>
<th>Tuples</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8)</td>
<td>1110000</td>
</tr>
<tr>
<td>(9)</td>
<td>0011111</td>
</tr>
<tr>
<td>(10)</td>
<td>0000111</td>
</tr>
<tr>
<td>(26)</td>
<td>0000000</td>
</tr>
<tr>
<td>(108)</td>
<td>0000000</td>
</tr>
</tbody>
</table>

1 means tuple has the particular search key value
0 means otherwise

- Looks familiar?
 - Keywords \(\times \) documents

More indexes ahead!

- Bitmap index
 - Generalized value-list index
 - Projection index
 - Bit-sliced index

Bitmap index

- Value-list index—stores the matrix by rows
 - Traditionally list contains pointers to tuples
 - \(B^+ \)-tree: tuples with same search key values
 - Inverted list: documents with same keywords
- If there are not many search key values, and there are lots of 1's in each row, pointer list is not space-efficient
 - How about a bitmap?
 - Still a \(B^+ \)-tree, except leaves have a different format
Technicalities

- How do we go from a bitmap index (0 to \(n - 1 \)) to the actual tuple?
 - One more level of indirection solves everything
 - Or, given a bitmap index, directly calculate the physical block number and the slot number within the block for the tuple
 - In either case, certain block/slot may be invalid
 - Because of deletion, or variable-length tuples
 - Keep an existence bitmap: bit set to 1 if tuple exists

Bitmap versus traditional value-list

- Operations on bitmaps are faster than pointer lists
 - Bitmap AND: bit-wise AND
 - Value-list AND: sort-merge join
- Bitmap is more efficient when the matrix is sufficiently dense; otherwise, pointer list is more efficient
 - Smaller means more in memory and fewer I/O’s
- Generalized value-list index: with both bitmap and pointer list as alternatives

Projection index

- Just store \(\pi_A(R) \) and use it as an index!

Why projection index?

- Idea: still a table scan, but we are scanning a much smaller table (project index)
 - Savings could be substantial for long tuples with lots of attributes
- Looks familiar?
 - DSM!
 - Except that we keep the original table

Bit-sliced index

- If a column stores binary numbers, then slice their bits vertically
 - Basically a projection index by slices

Aggregate query processing example

```sql
SELECT \text{SUM}(\text{dollar_sales})
FROM Sales
WHERE condition;
```

- Already found \(B_j \) (a bitmap or a sorted list of TID’s that point to Sales tuples that satisfy condition)
 - Probably used a secondary index
- Need to compute \(\text{SUM}(\text{dollar_sales}) \) for tuples in \(B_j \)
SUM without any index

- For each tuple in B_f, go fetch the actual tuple, and add $dollar_sales$ to a running sum
- I/O’s: number of $Sales$ blocks with B_f tuples
 - Assuming we fetch them in sorted order

SUM with a value-list index

- Assume a value-list index on $Sales(dollar_sales)$
- Idea: the index stores $dollar_sales$ values and their counts (in a pretty compact form)
- \[\text{sum} = 0; \]
 - Scan $Sales(dollar_sales)$ index; for each indexed value v with value-list B_v:
 \[\text{sum} += v \times \text{count-1-bits}(B_f \text{ AND } B_v); \]
- I/O’s: number of blocks taken by the value-list index
- Bitmaps can possibly speed up AND and reduce the size of the index

SUM with a projection index

- Assume a projection index on $Sales(dollar_sales)$
- Idea: merge join B_f and the projection index, add joining tuples’ $dollar_sales$ to a running sum
 - Assuming both B_f, and the index are sorted on TID
- I/O’s: number of blocks taken by the projection index
 - Compared with a value-list index, the projection index may be more compact (no empty space or pointers), but it does store duplicate $dollar_sales$ values
 - Also: simpler algorithm, fewer CPU operations

SUM with a bit-sliced index

- Assume a bit-sliced index on $Sales(dollar_sales)$, with slices $B_{k-1}, ..., B_1, B_0$
- \[\text{sum} = 0; \]
 - for $i = 0$ to $k - 1$:
 \[\text{sum} += 2^i \times \text{count-1-bits}(B_f \text{ AND } B_i); \]
- I/O’s: number of blocks taken by the bit-sliced index
- Conceptually a bit-sliced index contains the same information as a projection index
 - But the bit-sliced index does not keep TID
 - Bitmap AND is faster

Summary of SUM

- Best: bit-sliced index
 - Index is small
 - B_f can be applied fast!
- Good: projection index
- Not bad: value-list index
 - Full-fledged index carries a bigger overhead
 - The fact that we have counts of values helped
 - But we did not really need values to be ordered

MEDIAN

\[\text{SELECT MEDIAN(dollar_sales)} \]
\[\text{FROM Sales} \]
\[\text{WHERE condition;} \]

- Same deal: already found B_f (a bitmap or a sorted list of TID’s that point to $Sales$ tuples that satisfy condition)
- Need to find the $dollar_sales$ value that is greater than or equal to $\frac{1}{2} \times \text{count-1-bits}(B_f)$ $dollar_sales$ values among B_f tuples
MEDIAN with an ordered value-list index
- Idea: take advantage of the fact that the index is ordered by \textit{dollar_sales}.
- Scan the index in order, count the number of tuples that appeared in \(B_f\) until the count reaches \(\frac{1}{2} \times \text{count-1-bits}(B_f)\).
- I/O’s: roughly half of the index.

MEDIAN with a projection index
- In general, need to sort the index by \textit{dollar_sales}.
 - Well, when you sort, you more or less get back an ordered value-list index!
- Not useful unless \(B_f\) is small.

MEDIAN with a bit-sliced index
- Tough at the first glance—index is not sorted.
- Think of it as sorted:
 - We won’t actually make use of the this fact.

\[
\begin{array}{ll}
0 0 0 \ldots & \text{Yes; continue searching for median here} \\
0 1 1 \ldots & \\
1 0 0 \ldots & \text{No; continue searching for median here} \\
1 1 1 \ldots & \\
\end{array}
\]

Look at \(B_{k-1}\) first.
More than half are 0’s?
By looking at \(B_{k-1}\), we know the \((k-1)\)-th bit of the median.

MEDIAN with a bit-sliced index
- median = 0;
- \(B_{\text{current}} = B_f\); // which tuples we are considering
- sofar = 0; // number of tuples whose values are less
- \(B_{\text{current}} = B_{\text{current}} \AND \NOT(B_i)\);
- for \(i = k - 1\) to 0:
 - if (sofar + \text{count-1-bits}(B_{\text{current}} \AND \NOT(B_i))) \leq \frac{1}{2} \times \text{count-1-bits}(B_f)):
 - \(B_{\text{current}} = B_{\text{current}} \AND B_i\);
 - sofar += \text{count-1-bits}(B_{\text{current}} \AND \NOT(B_i));
 - median += 2^i;
 - else:
 - \(B_{\text{current}} = B_{\text{current}} \AND \NOT(B_i)\);
- I/O’s: still need to scan the entire index.

Summary of MEDIAN
- Best: ordered value-list index
 - It helps to be ordered!
- Pretty good: bit-sliced index
 - Could beat ordered value-list index if \(B_f\) is ”clustered”
 - Only need to retrieve the corresponding segment.

More variant indexes
- “Improved Query Performance with Variant Indexes,”
 by O’Neil and Quass. SIGMOD, 1997
- \textsc{MIN/MAX}, and range query using bit-sliced index
- Join indexes for star schema
 - Traditional: one for each combination of foreign columns
 - Bitmap: one for each foreign column
 - Precomputed query results (materialized views)?
Variant vs. traditional indexes

- What is the more glaring problem of these variant indexes that makes them not as widely applicable as the B⁺-tree?
 - Difficult to update
- How did the paper get away with that?
 - OLAP with periodic batch updates