Query Optimization
Part II

CPS 216
Advanced Database Systems

Announcements (April 13)

- Homework #4 due in 7 days (Tuesday, April 20)
- Final exam on Monday, April 26
 - 3 hours—no time pressure!
 - Open book, open notes
 - Comprehensive, but with emphasis on the second half of the course and materials exercised in homework
- Project demo period: Tues./Wed. after the final
 - A sign-up sheet will be available this Thursday
 - Final report due before the demo

Review of the bigger picture

Query optimization

- Consider a space of possible plans (Last Thursday)
 - Rewrite logical plan to combine “blocks” as much as possible
 - Each block will then be optimized separately
 - Fewer blocks → larger plan space
- Estimate costs of plans in the search space (today)
- Search through the space for the “best” plan (Thursday)
Cost estimation

Physical plan example:

\[
\text{SORT} \quad \text{CID} \quad \text{MERGE-JOIN} \quad \text{SID} \\
\text{SCAN} \quad \text{Course} \\
\text{SCAN} \quad \text{Enroll} \\
\text{SCAN} \quad \text{Student} \\
\text{FILTER} \quad \text{name} = \text{"Bart"} \\
\text{SORT} \quad \text{SID} \\
\text{SCAN} \quad \text{Enroll} \\
\]

- We have: cost estimation for each operator
 - Example: \(\text{SORT}(\text{CID}) \) takes \(2 \times B(\text{input}) \)
 - But what is \(B(\text{input})? \)
- We need: size of intermediate results

Simple statistics

- Suppose DBMS collects the following statistics for each table \(R \)
 - Size of \(R \): \(|R| \)
 - For each column \(A \) in \(R \), the number of distinct \(A \) values:
 \(|\pi_A R| \)
 - Assumption: \(R \).\(A \) values are uniformly distributed over \(\pi_A R \) (i.e., all values have the same count in \(R \))
- Statistics are often re-computed periodically; accurate statistics are not required for estimation

Selections with equality predicates

- \(Q: \sigma_A = v \quad R \)
- Additional assumption: \(v \) does appear in \(R \)
- \(|Q| \approx \left| \frac{|R|}{|\pi_A R|} \right| \)
 - \(1/|\pi_A R| \) is the selectivity factor of predicate \((A = v) \)
 - This predicate reduces the size of input table by the selectivity factor
Conjunctive predicates

- Q: \(\sigma_A = u \text{ and } B = v \) \(R \)
- Additional assumption: \((A = u) \) and \((B = v) \) are independent
 - Example:
 - Counterexample:
 - \(|Q| \approx |R| / (|\pi_A R| \cdot |\pi_B R|) \)
 - Reduce the input size by all selectivity factors

Negated and disjunctive predicates

- Q: \(\sigma_A \neq v \) \(R \)
 - \(|Q| \approx |R| \cdot (1 - 1 / |\pi_A R|) \)
 - Selectivity factor of \(\neg p \) is \(1 - \text{selectivity factor of } p \)
- Q: \(\sigma_A = u \text{ or } B = v \) \(R \)
 - \(|Q| \approx |R| \cdot (1 / |\pi_A R| + 1 / |\pi_B R|) \)
 - Intuition: \((A = u) \) or \((B = v) \) is equivalent to \(\neg (\neg (A = u) \text{ and } \neg (B = v)) \)

Range predicates

- Q: \(\sigma_A > v \) \(R \)
- Not enough information!
 - Just pick, say, \(|Q| \approx |R| \cdot 1/3 \)
- With more information
 - Largest \(R.A \) value: high(\(R.A \))
 - Smallest \(R.A \) value: low(\(R.A \))
 - \(|Q| \approx |R| \cdot (\text{high}(\(R.A \)) - v) / (\text{high}(\(R.A \)) - \text{low}(\(R.A \))) \)
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!
Two-way equi-join

\[Q: R(A, B) \bowtie S(B, C) \]

Additional assumption: containment of value sets

- Every row in the “smaller” table (one with fewer distinct values for the join column) joins with some row in the other table
 - That is, if \(|\pi_B R| \leq |\pi_B S| \) then \(\pi_B R \subseteq \pi_B S \)
 - Certainly not true in general

\[|Q| \approx \frac{|R| \cdot |S|}{\max(|\pi_B R|, |\pi_B S|)} \]

Selectivity factor of \(R.B = S.B \) is 1/\(\max(|\pi_B R|, |\pi_B S|) \)

Multi-table equi-join

\[Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \]

What is the number of distinct \(C \) values in the join of \(R \) and \(S \)?

Additional assumption: preservation of value sets

- A non-join attribute does not lose values from its set of possible values
 - That is, if \(A \) is in \(R \) but not \(S \), then \(\pi_A(R \bowtie S) = \pi_A R \)
 - Certainly not true in general

Multi-table equi-join (cont’d)

\[Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \]

Start with the product of relation sizes

- \(|R| \cdot |S| \cdot |T| \)

Reduce the total size by the selectivity factor of each join predicate

- \(R.B = S.B \): 1/\(\max(|\pi_B R|, |\pi_B S|) \)
- \(S.C = T.C \): 1/\(\max(|\pi_C S|, |\pi_C T|) \)
- \(|Q| \approx \frac{(|R| \cdot |S| \cdot |T|)}{(\max(|\pi_B R|, |\pi_B S|) \cdot \max(|\pi_C S|, |\pi_C T|))} \)
Recap: cost estimation with simple stats

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer “hints”

```sql
SELECT * FROM Student WHERE GPA > 3.9;
SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
```

- Next: better estimation using more information (histograms)

Histograms

- Motivation
 - \(|R|, |\pi| R|, \text{high}(R.A), \text{low}(R.A)\)
 - Too little information
 - Actual distribution of \(R.A\): \((v_1, f_1), (v_2, f_2), \ldots, (v_n, f_n)\)
 - \(f_i\) is frequency of \(v_i\), or the number of times \(v_i\) appears as \(R.A\)
 - Too much information
- Anything in between?
 - Partition the domain of \(R.A\) into buckets
 - Store a small summary of the distribution within each bucket
 - Number of buckets is the “knob” that controls the resolution

Equi-width histogram

- Divide the domain into \(B\) buckets of equal width
- Store the bucket boundaries and the sum of frequencies of the values within each bucket
Construction and maintenance

- **Construction**
 - If high(R_A) and low(R_A) are known, use one pass over R to construct an accurate equi-width histogram
 - Keep a running count for each bucket
 - If scanning is unacceptable, use sampling
 - Construct a histogram on R_{sample} and scale frequencies by $|R|/|R_{sample}|$

- **Maintenance**
 - Incremental maintenance: for each update on R, increment/decrement the corresponding bucket frequencies
 - Periodical recomputation: because distribution changes slowly

Using an equi-width histogram

- $Q: \sigma_A = \leq R$
 - 5 is in bucket [5, 8] (with 19 rows)
 - Assume uniform distribution within the bucket
 - $|Q| \approx 19/4 \approx 5$ ($|Q| = 1$, actually)

- $Q: \sigma_A \geq 7 \text{ and } 4 \leq 16 R$
 - [7, 16] covers [9, 12] (27) and [13, 16] (13)
 - [7, 16] partially covers [5, 8] (19)
 - $|Q| \approx 19/2 + 27 + 13 \approx 50$ ($|Q| = 52$, actually)

- $Q: R(A, B) \rightarrow S(B, C)$
 - Consider only joining buckets in histograms for $R.B$ and $S.B$
 - Rows in other buckets do not join
 - Within the joining buckets, use simple rules

Equi-height histogram

- Divide the domain into B buckets with roughly the same number of rows in each bucket
- Store this number and the bucket boundaries
- Intuition: high frequencies are more important than low frequencies
Construction and maintenance

- Construction
 - Sampling also works
- Maintenance
 - Incremental maintenance
 - Merge adjacent buckets with small counts
 - Split any bucket with a large count
 - Select the median value to split
 - Need a sample of the values within this bucket to work well
 - Periodic recomputation also works

Using an equi-height histogram

- $Q: \sigma_A = 5R$
 - 5 is in bucket $[1, 7]$ (16)
 - Assume uniform distribution within the bucket
 - $|Q| \approx 16/7 \approx 2$ ($|Q| = 1$, actually)
- $Q: \sigma_A \geq 7$ and $A \leq 16R$
 - $[7, 16]$ covers $[8, 9], [10, 11], [12, 16]$ (all with 16)
 - $[7, 16]$ partially covers $[1, 7]$ (16)
 - $|Q| \approx 16/7 + 16 + 16 + 16 \approx 50$ ($|Q| = 52$, actually)
- Join similar to equi-width histogram

Histogram tricks

- Store the number of distinct values in each bucket
 - To remove the effects of the values with 0 frequency
 - These values tend to cause underestimation
 - Assume uniform spread (the difference between this value and the next value with non-zero frequency)
- Compressed histogram
 - Store (v, f) pairs explicitly if f is high
 - For other values, use an equi-width or equi-height histogram
- Self-tuning
 - Analyze feedback from query execution engine to refine histograms
- Aboulnaga and Chaudhuri, SIGMOD 1999
More histograms

- More in Poosala et al., SIGMOD 1996
- V-optimal(V, F) histogram
 - Avoid putting very different frequencies into the same bucket
 - Partition in a way to minimize $\sum_i \text{VAR}_i$, overall, where VAR_i is the frequency variance within bucket i
- MaxDiff(V, A) histogram
 - Define area to be the product of the frequency of a value and its spread
 - Insert bucket boundaries where two adjacent areas differ by large amounts
 - A bit easier to construct than V-optimal; comparable performance

Wavelets

- Mathematical tool for hierarchical decomposition of functions and signals
- Haar wavelets: recursive pair-wise averaging and differencing at different resolutions
 - Simplest wavelet basis, easy to implement

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Averages</th>
<th>Detail coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>[2, 2, 0, 2, 3, 5, 4, 4]</td>
<td>[0, –1, –1, 0]</td>
</tr>
<tr>
<td>2</td>
<td>[2, 1, 4, 4]</td>
<td>[0.5, 0]</td>
</tr>
<tr>
<td>1</td>
<td>[1.5, 4]</td>
<td>[0.5, 0]</td>
</tr>
<tr>
<td>0</td>
<td>[2.75]</td>
<td>[–1.25]</td>
</tr>
</tbody>
</table>

Haar wavelet decomposition: [2.75, –1.25, 0.5, 0, 0, –1, –1, 0]

Haar wavelet coefficients

- Hierarchical decomposition structure
Wavelet-based histogram

- Idea: use a compact subset of wavelet coefficients to approximate the data distribution
 - Matias et al., SIGMOD 1998
 - Transform the distribution function which maps \(v_i \) to \(f_i \)
- Steps
 - Compute cumulative data distribution function \(C(v) \)
 - \(C(v) \) is the number of tuples with \(R \cdot A \leq v \)
 - Compute wavelet transform of \(C \)
 - Coefficient thresholding: keep only the coefficients that are largest in absolute normalized value
 - For Haar wavelets, divide coefficients at resolution \(j \) by \(2^{j/2} \)

Using a wavelet-based histogram

- \(Q: \sigma_A > v \) and \(A \leq v \cdot R \)
- \(|Q| = C(v) - C(u) \)
- Search the tree to reconstruct \(C(v) \) and \(C(u) \)
 - Worst case: two paths, \(O(\log N) \), where \(N \) is the size of the domain
 - If we just store \(B \) coefficients, it becomes \(O(B) \), but answers are now approximate
- What about \(Q: \sigma_A = v \cdot R \)?
 - Same as \(\sigma_A > \) predecessor(\(v \)) and \(A \leq v \cdot R \)

Summary of histograms

- Wavelet-based histograms are shown to work better than traditional bucket-based histograms
- The trick of using cumulative distribution for range query estimation also works for bucket-based histograms
- Trade-off: better accuracy ↔ bigger size, and higher construction and maintenance costs