Query Optimization
Part II

CPS 216
Advanced Database Systems

Announcements (April 13)

- Homework #4 due in 7 days (Tuesday, April 20)
- Final exam on Monday, April 26
 - 3 hours—no time pressure!
 - Open book, open notes
 - Comprehensive, but with emphasis on the second half of the course and materials exercised in homework
- Project demo period: Tues./Wed. after the final
 - A sign-up sheet will be available this Thursday
 - Final report due before the demo

Review of the bigger picture

Query optimization

- Consider a space of possible plans (Last Thursday)
 - Rewrite logical plan to combine “blocks” as much as possible
 - Each block will then be optimized separately
 - Fewer blocks → larger plan space
- Estimate costs of plans in the search space (today)
- Search through the space for the “best” plan (Thursday)

Cost estimation

Physical plan example:

- We have: cost estimation for each operator
 - Example: \(\text{SORT}(\text{CID}) \) takes \(2 \times B(\text{input}) \)
 - But what is \(B(\text{input}) \)?
- We need: size of intermediate results

Simple statistics

- Suppose DBMS collects the following statistics for each table \(R \)
 - Size of \(R \): \(|R| \)
 - For each column \(A \) in \(R \), the number of distinct \(A \) values: \(|\pi_A R| \)
 - Assumption: \(RA \) values are uniformly distributed over \(\pi_A R \) (i.e., all values have the same count in \(R \))
 - Statistics are often re-computed periodically; accurate statistics are not required for estimation

Selections with equality predicates

- \(Q: \sigma_A = v \ R \)
- Additional assumption: \(v \) does appear in \(R \)
- \(|Q| \approx \left[|R| / |\pi_A R| \right] \)

\[1 / |\pi_A R| \] is the selectivity factor of predicate \((A = v) \)
- This predicate reduces the size of input table by the selectivity factor
Conjunctive predicates

- $Q: \sigma_{A = a \land B = b} R$
- Additional assumption: $(A = a)$ and $(B = b)$ are independent
 - Example: age and gender
 - Counterexample: major and advisor
- $|Q| \approx \left\lceil \frac{|R|}{\left(\pi_A R \cdot \pi_B R\right)} \right\rceil$
 - Reduce the input size by all selectivity factors

Negated and disjunctive predicates

- $Q: \sigma_{A \neq a \lor B \neq b} R$
- Selectivity factor of $\neg p$ is $(1 - \text{selectivity factor of } p)$
- Additional assumption: containment of value sets
- $|Q| \approx \left\lceil \frac{|R| \cdot (1 - \frac{1}{\pi_A R} + \frac{1}{\pi_B R})}{\frac{1}{\pi_A R}} \right\rceil$
 - No! Rows satisfying $(A = a)$ and $(B = b)$ are counted twice
 - Intuition: $(A = a)$ or $(B = b)$ is equivalent to $\neg (\neg (A = a) \land \neg (B = b))$

Range predicates

- $Q: \sigma_{A > a} R$
- Not enough information!
 - Just pick, say, $|Q| \approx \left\lceil |R| \cdot \frac{1}{3} \right\rceil$
- With more information
 - Largest A value: high(R.A)
 - Smallest A value: low(R.A)
 - $|Q| \approx \left\lceil \frac{|R| \cdot \text{high}(R.A) - \epsilon}{\text{high}(R.A) - \text{low}(R.A)} \right\rceil$
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!

Two-way equi-join

- $Q: R(A, B) \bowtie S(B, C)$
- Additional assumption: containment of value sets
 - Every row in the “smaller” table (one with fewer distinct values for the join column) joins with some row in the other table
 - That is, if $\pi_R R \leq |π_B S|$ then $π_R R \subseteq π_B S$
 - Certainly not true in general
 - $|Q| \approx \left\lceil \frac{|R| \cdot |S|}{\text{max}(\pi_R R, |π_B S|)} \right\rceil$
 - Selectivity factor of $R.B = S.B$ is $\frac{1}{\text{max}(\pi_R R, |π_B S|)}$

Multi-table equi-join

- $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
- What is the number of distinct C values in the join of R and S?
- Additional assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if A is in R but not S, then $\pi_A (R \bowtie S) = \pi_A R$
 - Certainly not true in general

Multi-table equi-join (cont’d)

- $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
- Start with the product of relation sizes
 - $|R| \cdot |S| \cdot |T|$
 - Reduce the total size by the selectivity factor of each join predicate
 - $R.B = S.B: \frac{1}{\text{max}(\pi_R R, |π_B S|)}$
 - $S.C = T.C: \frac{1}{\text{max}(\pi_C S, |π_C T|)}$
 - $|Q| \approx \left\lceil \frac{(|R| \cdot |S| \cdot |T|) / \left(\text{max}(\pi_R R, |π_B S|) \cdot \text{max}(\pi_C S, |π_C T|)\right)}{\text{max}(\pi_R R, |π_B S|) \cdot \text{max}(\pi_C S, |π_C T|)} \right\rceil$
Recap: cost estimation with simple stats

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer “hints”

```sql
SELECT * FROM Student WHERE GPA > 3.9;
SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
```

- Next: better estimation using more information (histograms)

Histograms

- Motivation
 -Too little information
 -Actual distribution of \(R . A \): \((v_1, f_1), (v_2, f_2), \ldots, (v_n, f_n)\)
 - \(f_i \) is frequency of \(v_i \), or the number of times \(v_i \) appears as \(R . A \)
 -Too much information
 -Anything in between?

Equi-width histogram

- Divide the domain into \(B \) buckets of equal width
- Store the bucket boundaries and the sum of frequencies of the values within each bucket

Construction and maintenance

- Construction
 - If high(\(R . A \)) and low(\(R . A \)) are known, use one pass over \(R \) to construct an accurate equi-width histogram
 - Keep a running count for each bucket
 - If scanning is unacceptable, use sampling
 - Construct a histogram on \(R_{sample} \), and scale frequencies by \(|R| / |R_{sample}| \)
- Maintenance
 - Incremental maintenance: for each update on \(R \), increment/decrement the corresponding bucket frequencies
 - Periodical recomputation: because distribution changes slowly

Using an equi-width histogram

- \(Q: \sigma_A = \pi R \)
 - 5 is in bucket [5, 8] (with 19 rows)
 - Assume uniform distribution within the bucket
 - \(|Q| \approx 19/4 \approx 5 \) \((|Q| = 1, \text{ actually})\)
- \(Q: \sigma_{A \geq 7} \cap \sigma_{A \leq 16} = \pi R \)
 - [7, 16] covers [9, 12] (27) and [13, 16] (13)
 - [7, 16] partially covers [5, 8] (19)
 - \(|Q| \approx 19/2 + 27 + 13 \approx 50 \) \((|Q| = 52, \text{ actually})\)
- \(Q: R(A, B) \bowtie S(B, C) \)
 - Consider only joining buckets in histograms for \(R . B \) and \(S . B \)
 - Rows in other buckets do not join
 - Within the joining buckets, use simple rules

Equi-height histogram

- Divide the domain into \(B \) buckets with roughly the same number of rows in each bucket
- Store this number and the bucket boundaries
- Intuition: high frequencies are more important than low frequencies
Construction and maintenance

- Construction
 - Sort all \(R_A \) values, and then take equally spaced splits
 - Example: 1 2 3 4 7 8 9 10 10 10 11 12 12 14 16 ...
 - Sampling also works
- Maintenance
 - Incremental maintenance
 - Merge adjacent buckets with small counts
 - Split any bucket with a large count
 - Select the median value to split
 - Need a sample of the values within this bucket to work well
 - Periodic recomputation also works

Using an equi-height histogram

- \(Q: \sigma_A = \frac{3}{4} R \)
 - 5 is in bucket \([1, 7]\) (16)
 - Assume uniform distribution within the bucket
 - \(|Q| \approx \frac{16}{7} \approx 2\) (\(|Q| = 1\), actually)
- \(Q: \sigma_A \geq \frac{7}{16} \) and \(A \leq 16 R \)
 - \([7, 16]\) covers \([8, 9], [10, 11], [12, 16]\) (all with 16)
 - \([7, 16]\) partially covers \([1, 7]\) (16)
 - \(|Q| \approx \frac{16}{7} + 16 + 16 + 16 \approx 50\)
 (\(|Q| = 52\), actually)
- Join similar to equi-width histogram

Histogram tricks

- Store the number of distinct values in each bucket
 - To remove the effects of the values with 0 frequency
 - These values tend to cause underestimation
 - Assume uniform spread (the difference between this value and the next value with non-zero frequency)
- Compressed histogram
 - Store \((v, f)\) pairs explicitly if \(f \) is high
 - For other values, use an equi-width or equi-height histogram
- Self-tuning
 - Analyze feedback from query execution engine to refine histograms
 - Aboulnaga and Chaudhuri, SIGMOD 1999

More histograms

- More in Poosala et al., SIGMOD 1996
- \(V\)-optimal\((V, F)\) histogram
 - Avoid putting very different frequencies into the same bucket
 - Partition in a way to minimize \(\sum VAR_i \) overall, where \(VAR_i \) is the frequency variance within bucket \(i \)
- MaxDiff\((V, A)\) histogram
 - Define area to be the product of the frequency of a value and its spread
 - Insert bucket boundaries where two adjacent areas differ by large amounts
 - A bit easier to construct than \(V\)-optimal; comparable performance

Wavelets

- Mathematical tool for hierarchical decomposition of functions and signals
- Haar wavelets: recursive pair-wise averaging and differencing at different resolutions
 - Simplest wavelet basis, easy to implement

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Averages</th>
<th>Detail coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>[2, 2, 0, 2, 3, 5, 4, 4]</td>
<td>[0, –1, –1, 0]</td>
</tr>
<tr>
<td>2</td>
<td>[2, 1, 4, 4]</td>
<td>[0.5, 0]</td>
</tr>
<tr>
<td>1</td>
<td>[1.5, 4]</td>
<td>[–1.25]</td>
</tr>
<tr>
<td>0</td>
<td>[2.75]</td>
<td>–1.25</td>
</tr>
</tbody>
</table>

Haar wavelet decomposition: \([2.75, –1.25, 0.5, 0, 0, –1, –1, 0] \)

Haar wavelet coefficients

- Hierarchical decomposition structure

Original data
Wavelet-based histogram

- Idea: use a compact subset of wavelet coefficients to approximate the data distribution
 - Matias et al., SIGMOD 1998
 - Transform the distribution function which maps \(v_i \) to \(f_i \)
- Steps
 - Compute cumulative data distribution function \(C(v) \)
 - \(C(v) \) is the number of tuples with \(R.A \leq v \)
 - Compute wavelet transform of \(C \)
 - Coefficient thresholding: keep only the coefficients that are largest in absolute normalized value
 - For Haar wavelets, divide coefficients at resolution \(j \) by \(2^{j/2} \)

Using a wavelet-based histogram

- \(Q: \sigma_A > v \text{ and } A \leq R \)
- \(|Q| = C(v) - C(u) \)
- Search the tree to reconstruct \(C(v) \) and \(C(u) \)
 - Worst case: two paths, \(O(\log N) \), where \(N \) is the size of the domain
 - If we just store \(B \) coefficients, it becomes \(O(B) \), but answers are now approximate
- What about \(Q: \sigma_A = v \text{ and } R \)?
 - Same as \(\sigma_A > \text{predecessor}(v) \text{ and } A \leq v \text{ and } R \)

Summary of histograms

- Wavelet-based histograms are shown to work better than traditional bucket-based histograms
- The trick of using cumulative distribution for range query estimation also works for bucket-based histograms
- Trade-off: better accuracy \(\leftrightarrow \) bigger size, and higher construction and maintenance costs