Query Optimization
Part III

CPS 216
Advanced Database Systems

Announcements (April 15)

- Homework #4 due next Tuesday
- Classes on both Tuesday and Thursday next week
- Final exam on Monday, April 26
 - 3 hours—no time pressure!
 - Open book, open notes
 - Comprehensive, but with emphasis on the second half of
 the course and materials exercised in homework
- Project demo period: Tues./Wed. after the final
 - A sign-up sheet is circulating
 - Final report due before the demo

Review of the bigger picture

Query optimization

- Consider a space of possible plans
- Estimate costs of plans in the search space
- Search through the space for the "best" plan (today)

- Focus on select-project-join query blocks
 - Join ordering is the most important subproblem
Search space

- "Bushy" plan example:

- Search space is huge: 30240 bushy plans for a six-table join
- More if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators

Left-deep plans

- Heuristic: consider only "left-deep" plans, in which only the left child can be a join

- How many left-deep plans are there for \(R_1 \bowtie \cdots \bowtie R_n \)?

A greedy algorithm

- \(S_1, \ldots, S_n \)
 - Say selections have been pushed down; i.e., \(S_j = \sigma_{p_j} R_i \)
 - Start with the pair \(S_j, S_j \) with the smallest estimated size for \(S_j \bowtie S_j \)
 - Repeat until no table is left:
 - Pick \(S_j \) from the remaining tables such that the join of \(S_j \) and the current result yields an intermediate result of the smallest size
 - Minimize expected size

- Pick most efficient join method
- Current subplan
- Remaining tables to be joined
- Complexity?
Query optimization in System R

- A.k.a. Selinger-style query optimization
 - The classic paper on query optimization (Selinger et al., SIGMOD 1979)

- Basic ideas
 - Left-deep trees only
 - Bottom-up generation of plans using dynamic programming
 - "Interesting orders"

Bottom-up plan generation

- Observation 1: Once we have joined \(k \) tables together, the method of joining this result further with another table is independent of the previous join methods
- Observation 2: Any subplan of an optimal plan must also be optimal (otherwise we could replace the subplan to get a better overall plan)
 - Not exactly accurate (next slide)

- Bottom-up generation of optimal left-deep plans
 - Compute the optimal plans for joining \(k \) tables together
 - Suboptimal plans are pruned
 - From these plans, derive optimal plans for joining \(k+1 \) tables

The need for “interesting order”

- Example: \(R(A, B) \bowtie S(A, C) \bowtie T(A, D) \)
- Best plan for \(R \bowtie S \): nested-loop join (beats sort-merge)
- Best overall plan: sort-merge join \(R \) and \(S \), and then sort-merge join with \(T \)
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of \(R \) and \(S \) is sorted on \(A \)
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.)!
Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
- Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan X is better than plan Y if
 - Cost of X is lower than Y
 - Interesting orders produced by X subsume those produced by Y
- Need to keep a set of optimal plans for joining every combination of k tables
 - At most one for each interesting order

System-R algorithm

- Pass 1: Find the best single-table plans
- Pass 2: Find the best two-table plans by considering each single-table plan (from Pass 1) as the outer input and every other table as the inner input
 ...
- Pass k: Find the best k-table plans by considering each (k–1)-table plan (from Pass k–1) as the outer input and every other table as the inner input
 ...
- Heuristics
 - Push selections and projections down
 - Process cross products at the end

Reasoning about predicates

- `SELECT * FROM R, S, T`
 `WHERE R.A = S.A AND S.A = T.A;`
- Looks like a cross product between R and T
 - No join condition
System-R algorithm example

- \(\text{SELECT SID, CID} \)
- \(\text{FROM Student, Enroll, Course} \)
- \(\text{WHERE Student.age < 10} \)
- \(\text{AND Student.SID = Enroll.SID} \)
- \(\text{AND Enroll.CID = Course.CID} \)
- \(\text{AND Course.title LIKE '%data%'} \)

- Primary keys/indexes
 - \(\text{Student(SID), Enroll(CID, SID), Course(CID)} \)
- Ordered, secondary indexes
 - \(\text{Student(age), Course(title)} \)

Example: pass 1

- Plans for \(\{\text{Student}\} \)
 - S1: Table scan, then filter \((\text{age} < 10) \);
 cost 100; result ordered by \(\text{SID} \)
 - S2: Index scan using condition \((\text{age} < 10) \);
 cost 5; result ordered by \(\text{age} \)

- Plans for \(\{\text{Enroll}\} \)
 - E1: Table scan;
 cost 1000; result ordered by \(\text{CID, SID} \)

- Plans for \(\{\text{Course}\} \)
 - C1: Table scan, then filter \((\text{title} LIKE '%data%') \);
 cost 40; result ordered by \(\text{CID} \)
 - C2: Index scan with filter \((\text{title} LIKE '%data%') \);
 cost 60; result ordered by \(\text{title} \)

Example: pass 2

- Plans for \(\{\text{Student, Enroll}\} \)
 - Extending best plans for \(\{\text{Student}\} \)
 - From S1 (table scan, then filter \((\text{age} < 10) \))
 - Block-based nested loop join with \(\text{Enroll} \); cost 1100
 - Sort \(\text{Enroll} \) by \(\text{SID} \), and merge join; cost 5100;
 ordered by \(\text{SID} \) ← no longer an interesting order
 - From S2 (index scan using condition \((\text{age} < 10) \))
 - Block-based nested loop join with \(\text{Enroll} \); cost 1005
 - Extending best plans for \(\{\text{Enroll}\} \)
Example: pass 2 continued

- Plans for \(\{ \text{Student, Course} \} \)
 - Ignore; it is a cross product
- Plans for \(\{ \text{Enroll, Course} \} \)
 - Extending best plans for \(\{ \text{Course} \} \)
 - From C1 (table scan, then filter (title LIKE '%data%'))
 - Merge join; cost 1040
 - Extending best plans for \(\{ \text{Enroll} \} \) … …

Example: pass 3

- Finally, plans for \(\{ \text{Student, Enroll, Course} \} \)
 - Extending best plans for \(\{ \text{Student, Enroll} \} \)
 - … (INDEX-SCAN(\text{Student}) NLJ \text{Enroll}) NLJ FILTER(\text{Course});
 - cost …
 - … …
 - Extending best plans for \(\{ \text{Student, Course} \} \)
 - None!
 - Extending best plans for \(\{ \text{Enroll, Course} \} \)
 - … (FILTER(\text{Course}) SMJ \text{Enroll}) NLJ (INDEX-SCAN(\text{Student}));
 - cost …
 - … …

Considering bushy plans

Straightforward generalization:
- Store all optimal 1-table, 2-table, …, and \(k \)-table plans
- To find the optimal plan for \(k+1 \) tables
 - For every possible partition of these tables into two groups, find the best ways of joining the optimal plans for the two groups
 - Store the overall optimal plans
Optimiser “blow-up”

- A 20-way join will easily choke an optimizer using the System-R algorithm

Solutions
- Heuristics-based query optimization
- Randomized query optimization (Ioannidis & Kang, SIGMOD 1990)
- Genetic programming (PostgreSQL)

Search space revisited

Transformations

Relational algebra equivalences
(or query rewrite rules in general):
- Join method choice: \(R \bowtie_{\text{method}_1} S \rightarrow R \bowtie_{\text{method}_2} S \)
- Join commutativity: \(R \bowtie S \rightarrow S \bowtie R \)
- Join associativity: \((R \bowtie S) \bowtie T \rightarrow R \bowtie (S \bowtie T) \)
- Left join exchange: \((R \bowtie S) \bowtie T \rightarrow R \bowtie (T \bowtie S) \)
- Right join exchange: \(R \bowtie (S \bowtie T) \rightarrow S \bowtie (R \bowtie T) \)

*Why the last two redundant rules?
Iterative improvement

- Repeat until some stopping condition (e.g., time runs out):
 - Start with a random plan
 - Repeatedly go downhill (i.e., pick a neighbor with a lower cost randomly) to get to a local optimum
- Return the smallest local optimum found

Simulated annealing

- Start with a plan and an initial temperature
- Repeat until temperature is 0:
 - Repeat until some equilibrium (e.g., a fixed number of iterations):
 - Move to a random neighbor of the plan (an uphill move is allowed with probability $e^{-\Delta \text{cost} / \text{temperature}}$)
 - Larger \rightarrow smaller probability
 - Lower temperature \rightarrow smaller probability
 - Reduce temperature
- Return the plan visited with the lowest cost

Two-phase optimization

- Phase I: run iterative improvement for a while to find a good local optimum
- Phase II: run simulated annealing with a low initial temperature to get more improvements

Why does this heuristic tend to work better than both iterative improvement and simulated annealing?
Shape of the cost function

- An average local optimum has a much lower cost than an average plan
- The average distance between a random state and a local optimum is long
- There are lots of local optima
- Many local optima are connected together through low-cost plans within short distances

Comparison of randomized algorithms

- Iterative improvement

- Simulated annealing

- Two-phase
 - Phase I uses iterative improvement to get to the cup bottom quickly
 - Phase II uses simulated annealing to explore the cup bottom further