CompSci 516
Data Intensive Computing Systems

Lecture 10
Cost-based Query Optimization

Instructor: Sudeepa Roy
Announcements

• **Solution of Homework-1 has been posted on sakai**
 – Many equivalent solutions of the queries are possible

• **Homework-2 has been posted**
 – Due on February 29, Monday, 11:55 pm
 – Goal: review all key concepts covered so far, and practice for exams
 – Start early
 – Ask questions on piazza

• **Xiaodan’s office hour canceled this week**
 – Will be rescheduled

• **Lecture Pdfs will be (mostly) posted right before the class**
 – Don’t forget to see the updated version after the class
What will we learn?

• Last lecture:
 – Estimating cost of all operators and join algorithms

• Next:
 – Combine cost in a plan
 – Query Optimization
Reading Material

• [GUW]
 – Chapter 16.2-16.7

• Original paper by Selinger et al. :
 – P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. *Access Path Selection in a Relational Database Management System*
 Proceedings of ACM SIGMOD, 1979. Pages 22-34
 – No need to understand the whole paper, but take a look at the example (link on the course webpage)

Acknowledgement:
Some of the following slides have been created by adapting slides by Profs. Shivnath Babu and Magda Balazinska
Notation

• \(T(R) \) : Number of tuples in \(R \)
• \(B(R) \) : Number of blocks in \(R \)
• \(V(R, A) \) : Number of distinct values of attribute \(A \) in \(R \)
Query Optimization Problem

Pick the best plan from the space of physical plans
Cost-based Query Optimization

Pick the plan with least cost

Challenge:

• Do not want to execute more than one plan

• Need to estimate the cost without executing the plan

“heuristic-based” optimizer (e.g. push selections down) have limited power and not used much
Cost-based Query Optimization

Pick the plan with least cost

Tasks:
1. Estimate the cost of individual operators (done)
2. Estimate the size of output of individual operators (today)
3. Combine costs of different operators in a plan (today)
4. Efficiently search the space of plans (today)
Task 1 and 2
Estimating cost and size of different operators

- Size = #tuples, NOT #pages
- Cost = #page I/O
 - but, need to consider whether the intermediate relation fits in memory, is written back to/read from disk (or on-the-fly goes to the next operator), etc.
Desired Properties of Estimating Sizes of Intermediate Relations

Ideally,

• should give accurate estimates (as much as possible)
• should be easy to compute
• should be logically consistent
 – size estimate should be independent of how the relation is computed
 – e.g. which join algorithm/join order is used

• But, no “universally agreed upon” ways to meet these goals
Cost of Table Scan

Cost: $B(R)$
Size: $T(R)$

$T(R) : \text{Number of tuples in } R$
$B(R) : \text{Number of blocks in } R$
Cost of Index Scan

Cost: \(B(R) \) – if clustered
\(T(R) \) – if unclustered

Size: \(T(R) \)

Note: size is independent of the implementation of the scan/index
Cost of Index Scan with Selection

\[X = \sigma_{R.A > 50} R \]

Cost: \(B(R) \times f \) – if clustered

\(T(R) \times f \) – if unclustered

Size: \(T(R) \times f \)

Reduction factor

\[f = \frac{\text{Max}(R.A) - 50}{\text{Max}(R.A) - \text{Min}(R.A)} \]

(assumes uniform distribution)

\(T(R) \): Number of tuples in R

\(B(R) \): Number of blocks in R
Cost of Index Scan with Selection (and multiple conditions)

\[
X = \sigma_{R.A > 50 \text{ and } R.B = C} R
\]

Cost: \(B(R) \times f - \text{if clustered} \)

Size: \(T(R) \times f \)

Reduction factors

\[
f_1 = \frac{\text{Max}(R.A) - 50}{\text{Max}(R.A) - \text{Min}(R.A)}
\]

\[
f_2 = \frac{T(R)}{V(R, B)}
\]

\[f = f_1 \times f_2 \text{ (assumes independence and uniform distribution)}\]

What is \(f_1 \) if the first condition is \(100 > R.1 > 50? \)

T(R) : Number of tuples in R
B(R) : Number of blocks in R
V(R, A) : Number of distinct values of attribute A in R
Cost of Index Scan with Selection (and multiple conditions)

\[X = \sigma_{R.A > 50 \text{ and } R.B = C} R \]

What is f if

Cost: \(B(R) \times f \) – if clustered

\[T(R) \times f \] – if unclustered

Size: \(T(R) \times f \)

Reduction factors

\[f_1 = \frac{\text{Max}(R.A) - 50}{\text{Max}(R.A) - \text{Min}(R.A)} \]

\[f_2 = \frac{T(R)}{V(R, B)} \]

\[f = f_1 \times f_2 \] (assumes independence and uniform distribution)

\(T(R) \): Number of tuples in \(R \)
\(B(R) \): Number of blocks in \(R \)
\(V(R, A) \): Number of distinct values of attribute \(A \) in \(R \)

Index Scan

Duke CS, Spring 2016

CompSci 516: Data Intensive Computing Systems

15
Cost of Projection

\[X = \pi_A R \]

Cost: depends on the method of scanning \(R \)

But tuples are smaller

If you have more information on the size of the smaller tuples, can estimate \#I/O better

\(\text{Size: } T(R) \)
Size of Join

Quite tricky
• If disjoint A and B values
 • then 0
• If A is key of R and B is foreign key of S
 • then T(S)
• If all tuples have the same value of R.A = S.B = x
 • then T(R) * T(S)

\(R.A = S.B \)

\(R \)
\(S \)

T (R) : Number of tuples in R
B (R) : Number of blocks in R
V(R, A) : Number of distinct values of attribute A in R
Size of Join

Two assumptions

1. Containment of value sets:
 - if \(V(R, A) \leq V(S, B) \), then all \(A \)-values of \(R \) are included in \(B \)-values of \(S \)
 - e.g. satisfied when \(A \) is foreign key, \(B \) is key

2. Preservation of value sets:
 - \(V(R \bowtie S, A \text{ or } B) = V(R, A) = V(S, B) \)
 - No value is lost in join

\[R.A = S.B \]

\[T(R) : \text{Number of tuples in } R \]
\[B(R) : \text{Number of blocks in } R \]
\[V(R, A) : \text{Number of distinct values of attribute } A \text{ in } R \]
Size of Join

Reduction factor
\[f = \frac{1}{\max(V(R, A), V(S, B))} \]

Size
\[\text{Size} = T(R) \times T(S) \times f \]

- \(T(R) \): Number of tuples in R
- \(B(R) \): Number of blocks in R
- \(V(R, A) \): Number of distinct values of attribute A in R
Size of Join

Reduction factor
\[f = \frac{1}{\max(V(R, A), V(S, B))} \]

Size = \(T(R) \times T(S) \times f \)

Why max?
- Suppose \(V(R, A) \leq V(S, B) \)
- The probability of an A-value joining with a B-value is \(\frac{1}{V(S.B)} = \text{reduction factor} \)
- Under the two assumptions stated earlier + uniformity

\(T(R) \) : Number of tuples in R
\(B(R) \) : Number of blocks in R
\(V(R, A) \) : Number of distinct values of attribute A in R
Task 3: Combine cost of different operators in a plan

With Examples
“Given” the physical plan

- Size = #tuples, NOT #pages
- Cost = #page I/O
 - but, need to consider whether the intermediate relation fits in memory, is written back to disk (or on-the-fly goes to the next operator) etc.
Example Query

Student \((\text{sid}, \text{name}, \text{age}, \text{address})\)
Book\((\text{bid}, \text{title}, \text{author})\)
Checkout\((\text{sid}, \text{bid}, \text{date})\)

Query:

\[
\text{SELECT } \text{S.name} \\
\text{FROM Student S, Book B, Checkout C} \\
\text{WHERE S.sid = C.sid} \\
\text{AND B.bid = C.bid} \\
\text{AND B.author = 'Olden Fames'} \\
\text{AND S.age > 12} \\
\text{AND S.age < 20}
\]
Assumptions

- Student: S, Book: B, Checkout: C

- Sid, bid foreign key in C referencing S and B resp.
- There are 10,000 Student records stored on 1,000 pages.
- There are 50,000 Book records stored on 5,000 pages.
- There are 300,000 Checkout records stored on 15,000 pages.
- There are 500 different authors.
- Student ages range from 7 to 24.

Warning: a few dense slides next 😊
Physical Query Plan – 1

S(sid, name, age, addr) T(S) = 10,000
B(bid, title, author) T(B) = 50,000
C(sid, bid, date) T(C) = 300,000
B(S) = 1,000
B(B) = 5,000
B(C) = 15,000

V(B, author) = 500
7 <= age <= 24

Q. Compute
1. the cost and cardinality in steps (a) to (d)
2. the total cost

Assumptions:
• Data is not sorted on any attributes
• For both in (a) and (b), outer relations fit in memory

(On the fly) (d) \(\Pi_{name} \)

(On the fly) (c) \(\sigma_{12<age<20 \land author = 'Olden Fames'} \)

(Tuple-based nested loop B inner)

(Block-nested loop, S outer, C inner)

Student S (File scan)

Checkout C (File scan)

Book B (File scan)

Duke CS, Spring 2016

CompSci 516: Data Intensive Computing Systems
\(S(\text{sid}, \text{name}, \text{age}, \text{addr}) \)
\(B(\text{bid}, \text{title}, \text{author}) \)
\(C(\text{sid}, \text{bid}, \text{date}) \)

\(T(S) = 10,000 \)
\(T(B) = 50,000 \)
\(T(C) = 300,000 \)

\(B(S) = 1,000 \)
\(B(B) = 5,000 \)
\(B(C) = 15,000 \)

\(V(B, \text{author}) = 500 \)
7 \(\leq \text{age} \leq 24 \)

Cost
\[
B(S) + B(S) \times B(C) \\
= 1000 + 1000 \times 15000 \\
= 15,001,000
\]

Cardinality
\(T(C) = 300,000 \)
- foreign key join, output pipelined to next join
- Can apply the formula as well

\[
T(S) \times T(C)/\max (V(S, \text{sid}), V(C, \text{sid})) \\
= T(S)
\]

since \(V(S, \text{sid}) \geq V(C, \text{sid}) \) and
\(T(S) = V(S, \text{sid}) \)
\[(b) \]

\[\text{Cost} = T(S \bowtie C) \cdot B(B) \]
\[= 300,000 \cdot 5,000 = 15 \cdot 10^8 \]

\[\text{Cardinality} = T(S \bowtie C) = 300,000 \]

- foreign key join, don’t need scanning for outer relation

\[(a) \]

\[\text{Tuple-based nested loop} \]
\[\text{B inner} \]

\[(c) \]
\[\sigma_{12<\text{age}<20} \land \text{author} = \text{‘Olden Fames’} \]

\[(d) \]
\[\Pi_{\text{name}} \]

\[(On the fly) \]

\[(b) \]

\[B \]

\[\text{Book B} \]

\[(File scan) \]

\[S \]

\[\text{Student S} \]

\[(File scan) \]

\[C \]

\[\text{Checkout C} \]

\[(File scan) \]
\[
(c, d)
\]

\[
(On \ the \ fly) \ (d) \ \Pi_{\text{name}}
\]

\[
(On \ the \ fly) \ (c) \ \sigma_{12 \text{< age < 20} \ \land \ \text{author} = 'Olden Fames'}
\]

\[
(\text{Tuple-based nested loop} \ B \ \text{inner})
\]

\[
(\text{Block-nested loop,} \ S \ \text{outer,} \ C \ \text{inner})
\]

\[
\text{Student} \ S \ \text{(File scan)}
\]

\[
\text{Checkout} \ C \ \text{(File scan)}
\]

\[\text{Book B (File scan)}\]

\[\text{Cost} = 0 \ (\text{on the fly})\]

\[\text{Cardinality} = 300,000 * 1/500 * 7/18 = 234 \ (\text{approx})\]

\[\text{(assuming uniformity and independence)}\]
S(sid, name, age, addr) \(T(S) = 10,000 \)
B(bid, title, author) \(T(B) = 50,000 \)
C(sid, bid, date) \(T(C) = 300,000 \)
B(S) = 1,000
B(B) = 5,000
B(C) = 15,000
V(B, author) = 500
7 <= age <= 24

\(\sigma_{12<\text{age}<20} \land \text{author} = \text{‘Olden Fames’} \)

Total cost = 1,515,001,000
Final cardinality = 234 (approx)
Physical Query Plan – 2

Q. Compute
1. the cost and cardinality in steps (a) to (g)
2. the total cost

Assumptions:
• Unclustered B+tree index on B.author
• Clustered B+tree index on C.bid
• All index pages are in memory
• Unlimited memory

S(sid, name, age, addr) B(bid, title, author) C(sid, bid, date)
T(S) = 10,000 T(B) = 50,000 T(C) = 300,000
B(S) = 1,000 B(B) = 5,000 B(C) = 15,000
V(B, author) = 500
7 <= age <= 24
V(B, author) = 500
7 <= age <= 24

(a) \(\sigma \)}_{\text{author} = \text{‘Olden Fames’}}

(Book B (Index scan))

Book B

(On the fly)

(f) \(\sigma \)_{12<\text{age}<20}

((Block nested loop S inner))

(On the fly)

(d) \(\Pi \)_{\text{sid}}

(On the fly)

(b) \(\Pi \)_{\text{bid}}

(On the fly)

(g) \(\Pi \)_{\text{name}}

(e)

(sid)

(On the fly)

Bid

Student S

Checkout C

[Index scan]
Data Intensive Computing Systems

Let us consider a query that involves finding books that were written by Olden Fames and purchased by students under the age of 20. The query can be broken down into the following steps:

1. **Book B**: Use an index scan to find all books.
2. **Student S**: Use a block nested loop with Student S inner to find students who are between the ages of 7 and 24.
3. **Checkout C**: Use a nested loop with Cl. B+ on bid to find checkout records.
4. **Projection**: Project the names of the students.

The cost of the query can be calculated as follows:

\[
\text{Cost} = \frac{T(B)}{V(B, \text{author})} = \frac{50,000}{500} = 100 \text{ (unclustered)}
\]

The cardinality of the result is 100.

Query Details

- **S(sid,name,age,addr)**
 - **T(S)**: 10,000
 - **B(S)**: 1,000
 - **V(B,author)**: 500
 - **7 <= age <= 24**

- **B(bid,title,author)**: Un. B+ on author
 - **T(B)**: 50,000
 - **B(B)**: 5,000

- **C(sid,bid,date)**: Cl. B+ on bid
 - **T(C)**: 300,000
 - **B(C)**: 15,000
S(sid, name, age, addr)
B(bid, title, author): Un. B+ on author
C(sid, bid, date): Cl. B+ on bid

T(S) = 10,000 B(S) = 1,000 V(B, author) = 500
T(B) = 50,000 B(B) = 5,000 7 <= age <= 24
T(C) = 300,000 B(C) = 15,000

Cost = 0 (on the fly)
Cardinality = 100
S(sid, name, age, addr)
B(bid, title, author): Un. B+ on author
C(sid, bid, date): Cl. B+ on bid

\[(\text{Block nested loop S inner}) \]
\[(\text{Indexed-nested loop, B outer, C inner}) \]

(On the fly) \((\text{g}) \Pi_{\text{name}} \)
(On the fly) \((\text{f}) \sigma_{12<\text{age}<20} \)
(On the fly) \((\text{d}) \Pi_{\text{sid}} \)
(On the fly) \((\text{b}) \Pi_{\text{bid}} \)

\((\text{Student S File scan}) \)
\((\text{Checkout C Index scan}) \)
\((\text{Book B Index scan}) \)

\[\text{T}(S) = 10,000 \quad \text{B}(S) = 1,000 \quad \text{V}(B, \text{author}) = 500 \]
\[\text{T}(B) = 50,000 \quad \text{B}(B) = 5,000 \]
\[\text{T}(C) = 300,000 \quad \text{B}(C) = 15,000 \]

\[7 \leq \text{age} \leq 24 \]

- one index lookup per outer B tuple
- 1 book has \(\frac{T(C)}{T(B)} = 6 \) checkouts (uniformity)
- \# C tuples per page = \(\frac{T(C)}{B(C)} = 20 \)
- 6 tuples fit in at most 2 consecutive pages (clustered) could assume 1 page as well

\textbf{Cost} \leq 100 \times 2 = 200

\textbf{Cardinality} = 100 \times 6 = 600

\[= 100 \times \frac{T(C)}{\text{MAX}(100, V(C, \text{bid}))} \]
assuming
\[V(C, \text{bid}) = V(B, \text{bid}) = T(B) = 50,000 \]
S(sid,name,age,addr)
B(bid,title,author): Un. B+ on author
C(sid,bid,date): Cl. B+ on bid

T(S)=10,000 B(S)=1,000 V(B,author) = 500
T(B)=50,000 B(B)=5,000 7 <= age <= 24
T(C)=300,000 B(C)=15,000

Cost = 0 (on the fly)
Cardinality = 600
S(sid,name,age,addr) T(S)=10,000 B(S)=1,000 V(B,author) = 500
B(bid,title,author): Un. B+ on author T(B)=50,000 B(B)=5,000
7 <= age <= 24
C(sid,bid,date): Cl. B+ on bid T(C)=300,000 B(C)=15,000

Outer relation is already in (unlimited) memory
need to scan S relation

Cost = B(S) = 1000
Cardinality = 600
S(sid, name, age, addr)
B(bid, title, author): Un. B+ on author
C(sid, bid, date): Cl. B+ on bid

T(S) = 10,000 B(S) = 1,000 V(B, author) = 500
T(B) = 50,000 B(B) = 5,000 7 <= age <= 24
T(C) = 300,000 B(C) = 15,000

\(f \sigma_{12 < \text{age} < 20} \)

\(\Pi_{\text{name}} \)

\(\Pi_{\text{sid}} \) (On the fly)

\(\Pi_{\text{bid}} \) (On the fly)

\(\sigma_{\text{author} = \text{‘Olden Fames’}} \)

Cost = 0 (on the fly)

Cardinality = 600 * 7/18 = 234 (approx)
S(sid, name, age, addr)
B(bid, title, author): Un. B+ on author
C(sid, bid, date): Cl. B+ on bid

T(S)=10,000 B(S)=1,000 V(B,author) = 500
T(B)=50,000 B(B)=5,000 7 <= age <= 24
T(C)=300,000 B(C)=15,000

Cost = 0 (on the fly)
Cardinality = 234
S(sid, name, age, addr)
B(bid, title, author): Un. B+ on author
C(sid, bid, date): Cl. B+ on bid

T(S) = 10,000
B(S) = 1,000
V(B, author) = 500
7 <= age <= 24

T(B) = 50,000
B(B) = 5,000

T(C) = 300,000
B(C) = 15,000

Block nested loop S inner

Total cost = 1300
(compare with 1,515,001,000 for plan 1!)

Final cardinality = 234 (approx)
(same as plan 1!)

(On the fly) (g) Π name
(On the fly) (f) σ_{12<age<20}
(On the fly) (e) sid
(On the fly) (d) Π sid
(Indexed-nested loop, B outer, C inner)

(On the fly) (b) Π bid
(a) σ_{author = 'Olden Fames'}

Book B (Index scan)

Total cost = 1300
(compare with 1,515,001,000 for plan 1!)

Final cardinality = 234 (approx)
(same as plan 1!)

(On the fly) (c) Student S (File scan)
Task 4: Efficiently searching the plan space

Use dynamic-programming based Selinger’s algorithm
Heuristics for pruning plan space

- Predicates as early as possible
- Avoid plans with cross products
- Only left-deep join trees
Physical Plan Selection

Logical Query Plan

P1 P2 Pn

C1 C2 Cn

Pick minimum cost one

Physical plans

Costs
Join Trees

Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5$

- Several possible structures of the trees
- Each tree can have $n!$ permutations of relations

(left-deep join tree)

(bushy join tree)

(logical plan space)

(physical plan space)

- Different implementation and scanning of intermediate operators for each logical plan
Selinger Algorithm

• Dynamic Programming based
• Dynamic Programming:
 – General algorithmic paradigm
 – Exploits “principle of optimality”
 – Useful reading:
 – Chapter 16, Introduction to Algorithms, Cormen, Leiserson, Rivest
• Considers the search space of left-deep join trees
 – reduces search space (only one structure), still n! permutations
 – interacts well with join algos (esp. NLJ)
 – e.g. might not need to write tuples to disk if enough memory
Principle of Optimality

Optimal for “whole” made up from optimal for “parts”
Principle of Optimality

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5 \)

Suppose, this is an Optimal Plan for joining \(R1 \ldots R5 \):
Principle of Optimality

Query: \(R_1 \Join R_2 \Join R_3 \Join R_4 \Join R_5 \)

Suppose, this is an Optimal Plan for joining R1…R5:
Principle of Optimality

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5 \)

Then, what can you say about this sub-plan?

This has to be the optimal plan for joining \(R3, R2, R4, R1 \)

Suppose, this is an Optimal Plan for joining \(R1 \ldots R5 \):
Principle of Optimality

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \bowtie R5 \)

Suppose, this is an Optimal Plan for joining \(R1 \ldots R5 \):

Then, what can you say about this sub-plan?

We are using the associativity and commutativity of joins

This has to be the optimal plan for joining \(R3, R2, R4 \)
Exploiting Principle of Optimality

Query: \[R_1 \bowtie R_2 \bowtie \ldots \bowtie R_n \]

Both are giving the same result
\[R_2 \bowtie R_3 \bowtie R_1 = R_3 \bowtie R_1 \bowtie R_2 \]

Optimal for joining \(R_1, R_2, R_3 \)

Sub-Optimal for joining \(R_1, R_2, R_3 \)
Exploiting Principle of Optimality

Suppose you chose the sub-optimal one

A sub-optimal sub-plan cannot lead to an optimal plan

Leads to sub-Optimal for joining R1,....,Rn
Notation

OPT (\{ R1, R2, R3 \}):

Cost of optimal plan to join $R1,R2,R3$

$T (\{ R1, R2, R3 \})$:

Number of tuples in $R1 \bowtie R2 \bowtie R3$
Selinger Algorithm:

Query: \(R_1 \bowtie R_2 \bowtie R_3 \bowtie R_4 \)

- \{ R_1, R_2, R_3, R_4 \}
- \{ R_1, R_2, R_3 \}
- \{ R_1, R_2, R_4 \}
- \{ R_1, R_3, R_4 \}
- \{ R_2, R_3, R_4 \}
- \{ R_1, R_2 \}
- \{ R_1, R_3 \}
- \{ R_1, R_4 \}
- \{ R_2, R_3 \}
- \{ R_2, R_4 \}
- \{ R_3, R_4 \}
- \{ R_1 \}
- \{ R_2 \}
- \{ R_3 \}
- \{ R_4 \}

e.g. All possible permutations of \(R_1, R_2, R_3 \) have been considered after \(\text{OPT}\{R_1, R_2, R_3\} \) has been computed.

Progress of algorithm
Simple Cost Model

\[\text{Cost} (R \bowtie S) = T(R) + T(S) \]

All other operators have 0 cost

Note: The simple cost model used for illustration only, it is not used in practice
Cost Model Example

\[
T(X) + T(T)
\]

\[
T(R) + T(S)
\]

Total Cost: \(T(R) + T(S) + T(T) + T(X) \)
Selinger Algorithm:

$$\text{OPT}\left(\{R1, R2, R3\}\right):$$

$$\min\begin{cases}
\text{OPT}\left(\{R1, R2\}\right) + T\left(\{R1, R2\}\right) + T(R3) \\
\text{OPT}\left(\{R2, R3\}\right) + T\left(\{R2, R3\}\right) + T(R1) \\
\text{OPT}\left(\{R1, R3\}\right) + T\left(\{R1, R3\}\right) + T(R2)
\end{cases}$$

Note: Valid only for the simple cost model
Selinger Algorithm:

Query: \(R_1 \bowtie R_2 \bowtie R_3 \bowtie R_4 \)

Progress of algorithm
Selinger Algorithm:

Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4$

Progress of algorithm
Selinger Algorithm:

Query: $R1 \bowtie R2 \bowtie R3 \bowtie R4$

Q. How to optimally compute join of $\{R1, R2, R3, R4\}$?

Ans: First optimally join $\{R1, R3, R4\}$ then join with $R2$ as inner.
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)

Q. How to optimally compute join of \{R1, R3, R4\}?

Ans: First optimally join \{R1, R3\}, then join with R4 as inner.
Selinger Algorithm:

Query: \(R1 \Join R2 \Join R3 \Join R4 \)

Q. How to optimally compute join of \{R1, R3\}?

Ans: First optimally join \{R3\}, then join with R1 as inner.
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)

Q. How to optimally compute join of \{R3\}?

Ans: Single relation – so optimally scan R3.
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)

Final optimal plan:

\[\begin{array}{ccc}
R3 & \bowtie & R1 \\
\bowtie & & \bowtie \\
& R4 & R2 \\
\end{array} \]

NOTE: There is a one-one correspondence between the permutation (R3, R1, R4, R2) and the above left deep plan.
Selinger Algorithm:

Query: \(R1 \bowtie R2 \bowtie R3 \bowtie R4 \)

NOTE: (*VERY IMPORTANT*)
- This is *NOT* done by top-down recursive calls.
- This is done BOTTOM-UP computing the optimal cost of *all* nodes in this lattice only once (dynamic programming).
Full Example: Optimization with Selinger’s

Sailors (sid, sname, srating, age)
Boats(bid, bname, color)
Reserves(sid, bid, date, rname)

Query:
SELECT S.sid, R.rname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid = R.sid
AND B.bid = R.bid
AND B.color = red

See yourself how to include actual operator algorithms and scanning methods while running Selinger’s

(Simple cost model is not useful in practice)
Available Indexes

- **Sailors**: S, Boats: B, Reserves: R

- Sid, bid foreign key in R referencing S and B resp.

- **Sailors**
 - Unclustered B+ tree index on sid
 - Unclustered hash index on sid

- **Boats**
 - Unclustered B+ tree index on color
 - Unclustered hash index on color

- **Reserves**
 - Unclustered B+ tree on sid
 - Clustered B+ tree on bid
First Pass

• Where to start?
 – How to access each relation, assuming it would be the first relation being read
 – File scan is also available!

• Sailors?
 – No selection matching an index, use File Scan (no overhead)

• Reserves?
 – Same as Sailors

• Boats?
 – Hash index on color, matches B.color = red
 – B+ tree also matches the predicate, but hash index is cheaper
 • B+ tree would be cheaper for range queries
Second Pass

• **What next?**

 – For each of the plan in Pass 1 taken as outer, consider joining another relation as inner

• **What are the combinations? How many new options?**

<table>
<thead>
<tr>
<th>Outer</th>
<th>Inner</th>
<th>OPTION 1</th>
<th>OPTION 2</th>
<th>OPTION 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (file scan)</td>
<td>B</td>
<td>(B+-color)</td>
<td>(hash color)</td>
<td>(File scan)</td>
</tr>
<tr>
<td>R (file scan)</td>
<td>S</td>
<td>(B+-sid)</td>
<td>(hash sid)</td>
<td>''</td>
</tr>
<tr>
<td>S (file scan)</td>
<td>B</td>
<td>(B+-color)</td>
<td>(hash color)</td>
<td>''</td>
</tr>
<tr>
<td>S (file scan)</td>
<td>R</td>
<td>(B+-sid)</td>
<td>(Cl. B+ bid)</td>
<td>''</td>
</tr>
<tr>
<td>B (hash index)</td>
<td>R</td>
<td>(B+-sid)</td>
<td>(Cl. B+ bid)</td>
<td>''</td>
</tr>
<tr>
<td>B (hash index)</td>
<td>S</td>
<td>(B+-sid)</td>
<td>(hash sid)</td>
<td>''</td>
</tr>
</tbody>
</table>

SELECT S.sid, R.rname
WHERE S.sid = R.sid
B.bid = R.bid, B.color = red
S (sid, sname, srating, age): 1. B+tree - sid, 2. hash index - sid

Second Pass

• Which outer-inner combinations can be discarded?
 – B, S and S, B: Cartesian product!

<table>
<thead>
<tr>
<th>Outer</th>
<th>Inner</th>
<th>OPTION 1</th>
<th>OPTION 2</th>
<th>OPTION 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (file scan)</td>
<td>B</td>
<td>(B+-color)</td>
<td>(hash color)</td>
<td>(File scan)</td>
</tr>
<tr>
<td>R (file scan)</td>
<td>S</td>
<td>(B+-sid)</td>
<td>(hash sid)</td>
<td></td>
</tr>
<tr>
<td>S (file scan)</td>
<td>B</td>
<td>(B+-color)</td>
<td>(hash color)</td>
<td></td>
</tr>
<tr>
<td>S (file scan)</td>
<td>R</td>
<td>(B+-sid)</td>
<td>(Cl. B+ bid)</td>
<td></td>
</tr>
<tr>
<td>B (hash index)</td>
<td>S</td>
<td>(B+-sid)</td>
<td>(hash sid)</td>
<td></td>
</tr>
<tr>
<td>B (hash index)</td>
<td>R</td>
<td>(B+-sid)</td>
<td>(Cl. B+ bid):</td>
<td></td>
</tr>
</tbody>
</table>

OPTION 3 is not shown on next slide, expected to be more expensive
S (sid, sname, srating, age): 1. B+tree - sid, 2. hash index - sid

```sql
SELECT S.sid, R.rname
WHERE S.sid = R.sid
B.bid = R.bid, B.color = red
```

<table>
<thead>
<tr>
<th>Outer</th>
<th>Inner</th>
<th>OPTION 1</th>
<th>OPTION 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (file scan)</td>
<td>S</td>
<td>(B+-sid) Slower than hash-index</td>
<td>(hash sid): likely to be faster</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(need Sailor tuples matching S.sid = value, where value comes from an outer R tuple)</td>
<td>2A. Index nested loop join</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>(B+-color) Not useful</td>
<td>2B Sort Merge based join: (no index is sorted on sid, need to sort, output sorted by sid, retained if cheaper)</td>
</tr>
<tr>
<td>S (file scan)</td>
<td>R</td>
<td>(B+-sid) Consider all methods</td>
<td>(Cl. B+ bid) Not useful</td>
</tr>
<tr>
<td>B (hash index)</td>
<td>R</td>
<td>(B+-sid) Not useful</td>
<td>(Cl. B+ bid)</td>
</tr>
</tbody>
</table>

2A. Index nested loop join
(no H. I. on bid)

2B. Sort-merge join
(clustered, index sorted on bid, produces outputs in sorted order by bid, retained if cheaper)

Keep the least cost plan between
• (R, S) and (S, R)
• (R, B) and (B, R)
Third Pass

- Join with the third relation
- For each option retained in Pass 2, join with the third relation
- E.g.
 - Boats (B+tree on color) – sort-merged-join – Reserves (B+tree on bid)
 - Join the result with Sailors (B+tree on sid) using sort-merge-join
 - Need to sort (B join R) by sid, was sorted on bid before
 - Outputs tuples sorted by sid
 - Not useful here, but will be useful if we had GROUP BY on sid
 - In general, a higher cost “interesting” plans may be retained (e.g. sort operator at root, grouping attribute in group by query later, join attribute in a later join)