Assignment 4

Course: CPS530

Due Date: Nov 6, 2012

Problem 1: For a graph $G = (V, E)$ with maximum clique size k, suppose there is a polynomial-time algorithm for finding a clique with size at least $k/2$. Based on this algorithm, describe a new algorithm (using this algorithm as a subroutine) to find a clique in G of size at least $k/\sqrt{2}$ in polynomial time. (Hint: Construct the new graph G^2 that has $|V|^2$ many nodes.)

Problem 2: A function $f : V \rightarrow \{1, 2, \ldots, k\}$ is called a k-coloring of the graph $G = (V, E)$ if for any edge $(u, v) \in E$, we have $f(u) \neq f(v)$. A graph is k-colorable if there exists a k-coloring of that graph.

(i) Given a graph G with maximum degree d (a vertex has at most d adjacent edges), describe a polynomial algorithm to find a $d + 1$-coloring of that graph.

(ii) Given a graph G, describe a polynomial algorithm to decide whether this graph is 2-colorable, and compute a 2-coloring of that graph if it’s 2-colorable.

(iii) Given a 3-colorable graph G, describe a polynomial algorithm to compute an $O(\sqrt{n})$-coloring of that graph. (Hint: Combine (i) and (ii).)

Problem 3: Assume S is a set of n distinct real numbers. We say that a number x is an ε-approximate median of S if at least $(\frac{1}{2} - \varepsilon)n$ numbers in S are less than x, and at least $(\frac{1}{2} - \varepsilon)n$ numbers in S are greater than x. Consider an algorithm that works as follows. Select a subset $S' \subseteq S$ uniformly at random, compute the median of S', and return this as an approximate median of S. Show that there is a constant c, independent of n, so that if you apply this algorithm with a sample S' of size c, then with probability at least .99, the number returned will be a (.05)-approximate median of S. (You may consider either the version of the algorithm that constructs S' by sampling with replacement, or one without).

Problem 4: Suppose there are n items of weight w_1, \ldots, w_n that need to be packed in containers, each of which can contain at most K units of weight. The goal is to pack these items in the minimum number of containers. Let m^* be the minimum number of containers needed to pack these items.

Consider the following greedy algorithm: Start with an empty container and begin filling items 1, 2, 3 into it until you get an item that would overflow the weight limit of the container. Declare this container “full” and start a new container and repeat the same process. Once a container is declared “full,” no other item is put in it.

(i) Show that the greedy algorithm uses at most $2m^*$ containers.

(ii) Show there is a sequence of n items on which the algorithm uses at least $2m^* - 2$ containers.