Due Date: October 4, 2011

Problem 1: [10pts] Let \(I \) be a set of \(n \) intervals on \(\mathbb{R}^1 \). Show that \(I \) can be preprocessed into a data structure of size \(O(n \log n) \) so that all intervals of \(I \) that are completely contained in query interval \(\gamma \) can be reported in \(O(\log n + k) \) time.

Problem 2: [10pts] Let \(\mathcal{R} \) be a set of \(n \) rectangles in \(\mathbb{R}^2 \). Show that \(\mathcal{R} \) can be preprocessed into a data structure of size \(O(n \log n) \) so that all \(k \) rectangles of \(\mathcal{R} \) containing a query point \(p \) can be reported in \(O(\log^2 n + k) \) time. Improve the running time to \(O(\log n + k) \). (Hint: Construct a segment tree on the \(x \)-intervals of the rectangles and store a secondary data structure at each node of the tree.)

Problem 3: [10pts] Let \(S \) be a set of \(n \) points in \(\mathbb{R}^2 \). Show that \(S \) can be preprocessed into a data structure of size \(O(n \log^2 n) \) so that all \(k \) points of \(S \) lying in a query equilateral triangle can be reported in \(O(\log^2 n + k) \) time. (Hint: Construct a multi-level range tree.)

Problem 4: [10pts] Let \(S \) be a set of \(n \) pairwise disjoint segments in \(\mathbb{R}^2 \), and let \(p \) be a point not lying on any segment of \(S \). Describe an \(O(n \log n) \) algorithm for computing all segments that are visible from \(p \) — a segment \(e \) is visible from \(p \) if there is a point \(q \in e \) such that the segment \(pq \) does not intersect the interior of any other segment.

Problem 5: [15pts] (i) Given a collection \(\mathcal{R} \) of “red” nonintersecting line segments and another collection \(\mathcal{B} \) of “blue” nonintersecting segments in \(\mathbb{R}^2 \), show that all red-blue intersections (intersections between a red segment and a blue segment) can be counted in time \(O(n \log^2 n) \), where \(n = |\mathcal{R}| + |\mathcal{B}| \). What is the space complexity of your algorithm? Improve the space complexity to \(O(n) \).
 (Hint: Use a segment tree on \(x \)-projections of segments and, at each node \(v \), count intersections among the segments stored at \(v \). You need to store some additional information at each node of the segment tree. Make sure that each intersection is counted exactly once.)
 Extra credit: Improve the time complexity to \(O(n \log n) \).