Useful probabilistic inequalities

Say we have a random variable X. Often want to bound the probability that X is too far away from its expectation. [In first class, we went in other direction, saying that with reasonable probability, a random walk on n steps reached at least \sqrt{n} distance away from its expectation]

Here are some useful inequalities for showing this:

Markov’s inequality: Let X be a non-negative r.v. Then for any positive k:

$$\Pr[X \geq k \mathbb{E}[X]] \leq \frac{1}{k}.$$

(No need for k to be integer.) Equivalently, we can write this as:

$$\Pr[X \geq t] \leq \frac{\mathbb{E}[X]}{t}.$$

Proof. $\mathbb{E}[X] = \Pr[X \geq t] \cdot t + \Pr[X < t] \cdot 0 \geq t \cdot \Pr[X \geq t].$

Defn of Variance: $\text{var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2].$ Standard deviation is square root of variance. Can multiply out variance definition to get:

$$\text{var}[X] = \mathbb{E}[X^2 - 2X\mathbb{E}[X] + \mathbb{E}[X]^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$$

Chebyshev’s inequality: Let X be a r.v. with mean μ and standard deviation σ. Then for any positive t, have:

$$\Pr[|X - \mu| > t\sigma] \leq \frac{1}{t^2}.$$

Proof. Equivalently asking what is the probability that $(X - \mu)^2 > t^2\text{var}[X]$. Now, just think of l.h.s. as a new non-negative random variable Y. What is its expectation? So, just apply Markov’s inequality.

Let’s suppose that our random variable $X = X_1 + \ldots + X_n$, where the X_i are simpler things that we can understand. Suppose there is not necessarily any independence. Then we can still compute the expectation

$$\mathbb{E}[X] = \mathbb{E}[X_1] + \ldots + \mathbb{E}[X_n]$$

and use Markov. (i.e., expectation is same as if they were independent)
Suppose we have pairwise independence. Then, $\text{var}[X]$ is same as if the X_i were fully independent. In fact, $\text{var}[X] = \sum_i \text{var}[X_i]$.

Proof.

\[
\text{E}[X^2] - (\text{E}[X])^2 = \sum_{i,j} \text{E}[X_i X_j] - \sum_{i,j} \text{E}[X_i] \text{E}[X_j] = \sum_i \text{E}[X_i^2] - \sum_i \text{E}[X_i]^2
\]

where the last inequality holds because $\text{E}[XY] = \text{E}[X] \text{E}[Y]$ for independent random variables, and all pairs here are independent except when $i = j$. So, can apply Chebychev easily.

Chernoff and Hoeffding bounds

What if the X_i's are fully independent? Let's say X is the result of a fair, n-step $\{-1, +1\}$ random walk (i.e., $\text{Pr}[X_i = -1] = \text{Pr}[X_i = +1] = 1/2$ and the X_i are mutually independent.) In this case, $\text{var}[X_i] = 1$ so $\text{var}[X] = n$ and $\sigma(X) = \sqrt{n}$. So, Chebyshev says:

\[
\text{Pr}[|X| \geq t\sqrt{n}] \leq \frac{1}{t^2}.
\]

But, in fact, because we have full independence, we can use the stronger Chernoff and Hoeffding bounds that in this case tell us:

\[
\text{Pr}[X \geq t\sqrt{n}] \leq e^{-\sigma^2/2}.
\]

The book contains some forms of these bounds. Here are some forms of them that I have found to be especially convenient.

Let X_1, \ldots, X_n be a sequence of m independent $\{0, 1\}$ random variables with $\text{Pr}[X_i = 1] = p_i$ not necessarily the same. Let S be the sum of the r.v., and $\mu = \text{E}[S]$. Then, for $0 \leq \delta \leq 1$, the following inequalities hold:

- $\text{Pr}[S > (1 + \delta)\mu] \leq e^{-\delta^2 \mu/3}$;
- $\text{Pr}[S < (1 - \delta)\mu] \leq e^{-\delta^2 \mu/2}$.

Additive bounds:

- $\text{Pr}[S - \mu > \delta n] \leq e^{-2n\delta^2}$.
- $\text{Pr}[S - \mu < -\delta n] \leq e^{-2n\delta^2}$.

Here is a somewhat intuitive proof, for the case of a fair random walk. The book has some less intuitive but shorter proofs too.
Theorem 1 Let $X = X_1 + \ldots + X_n$ with $\Pr[X_i = 1] = \Pr[X_i = -1] = 1/2$, and X_i mutually independent. Then

$$\Pr[X > \lambda \sqrt{n}] < e^{-\lambda^2/2}$$

for $\lambda > 0$.

Proof. Let’s look at a multiplicative version of the random walk. Let’s say that we start at 1, and on a heads we multiply our current position by $(1 + \epsilon)$ and on a tails we divide our current position by $(1 - \epsilon)$. So, we can write the random variable Y for this walk as:

$$Y = Y_1 \cdot Y_2 \cdots Y_n$$

where $\Pr[Y_i = (1 + \epsilon)] = \Pr[Y_i = 1/(1 - \epsilon)] = 1/2$ and the Y_i are independent. What does the distribution on Y look like? Just like in the standard additive random walk, the median of the distribution is our starting point (i.e., there is a 50/50 chance we will end up below 1 and a 50/50 chance we will end up above 1). But, the expectation is much larger, since only a few additional steps to the right can move us large distances. Formally, doing a simple calculation gives us:

$$E[Y_i] = 1 + e^2/(2 + 2\epsilon) \leq 1 + \epsilon^2/2$$

and therefore (using the fact that the Y_i are independent):

$$E[Y] \leq (1 + \epsilon^2/2)^n.$$

Let’s now think about what Markov’s inequality applied to Y, i.e.,

$$\Pr[Y > k \cdot E[Y]] \leq 1/k$$

tells us about our original (additive) version of the random walk. What happens is we lose something (compared to applying Markov to X directly) in that $E[Y]$ is pretty far to the right — we think it is “expected” for X to be as large as $\log_{1+\epsilon}(E[Y])$ — but we gain something critical: if X is just, say, $20/\epsilon$ steps larger than this value, then that corresponds to Y being a huge $(1 + \epsilon)^{20/\epsilon} \approx \epsilon^{20}$ times larger than its expectation, which by Markov has probability only $1/\epsilon^{20}$. Formally,

$$\Pr[X > \log_{1+\epsilon}(k \cdot E[Y])] \leq 1/k$$

$$\Pr[X > \log_{1+\epsilon}(k) + \log_{1+\epsilon}((1 + \epsilon^2/2)^n)] \leq 1/k$$

$$\Pr[X > \log_{1+\epsilon}(k) + n\epsilon/2] \leq 1/k$$

(where a bit of calculation gets you from the second-to-last to the last line). If we now set $k = (1 + \epsilon)^{n\epsilon/2} \approx \epsilon^{n\epsilon^2/2}$, we get:

$$\Pr[X > n\epsilon] \leq e^{-n^2\epsilon^2/2}$$

and setting $\epsilon = \lambda/\sqrt{n}$ gives us:

$$\Pr[X > \lambda \sqrt{n}] \leq e^{-\lambda^2/2}$$

as desired. ■

1Actually, I believe this approximation is slightly off in the wrong direction. So, to do this formally we need to have been more careful with our approximations above...
Randomized complexity classes

Let A denote a poly time algorithm that takes two inputs: a (regular) input x and an “auxiliary” input y where y has length $l(|x|)$ where l is a polynomial and is poly-time computable. Think of y as the random bits.

- **RP**: One-sided error. Language L (decision problem) is in **RP** if there exists a poly time A:

 For all $x \in L$, $\Pr_y[A(x, y) = 1] \geq 1/2$.

 For all $x \notin L$, $\Pr_y[A(x, y) = 1] = 0$.

 ($x \in L$ means x is something the algorithm is supposed to output 1 on.)

 For instance, there are algorithms for primality that have the following property: If the number is prime, then they output “PRIME”. If it is composite, then they output “PRIME” with prob. at most 1/2. So, this is RP for compositeness.

- **BPP**: Like RP, but:

 For all $x \in L$, $\Pr_y[A(x, y) = 1] \geq 3/4$.

 For all $x \notin L$, $\Pr_y[A(x, y) = 1] \leq 1/4$.

 It is believed that **BPP** \subseteq **P**. i.e., Randomness is useful for making things simpler and faster (or for protocol problems) but not for polynomial versus non-polynomial.

- **P/poly**: L is in **P/Poly** if there exists a poly time A such that for every $n = |x|$, there exists a fixed y such that $A(x, y)$ is always correct. i.e., y is an “advice” string. (Remember, $|y|$ has to be polynomial in n, etc.) Also, can view as class of polynomial-size circuits.

 RP in **P/poly**: Say A is an **RP** algorithm for L that uses ℓ random bits. Consider an algorithm \tilde{A} that uses an auxiliary input y of length $\ell(n + 1)$ to run $n + 1$ copies of A, and then outputs 1 if any of them produced a 1 and outputs 0 otherwise. Then, the probability (over y) that \tilde{A} fails on a given input x of length n is at most $1/2^{n+1}$. Therefore, with probability at least 1/2, a single random string y will cause \tilde{A} to succeed on all inputs of length n. Therefore, such a y must exist. ■

Another kind of distinction: Algs like quickselect where always give right answer, but running time varies are called **Las-Vegas algs**. Another type are **Monte-Carlo algs** where always terminate in given time bound, but say have only $3/4$ prob. of producing the desired solution (like **RP** or **BPP** or primality testing).