Intro

Administrivia.

- Signup sheet.
- prerequisites: 6.046, 6.041/2, ability to do proofs
- homework weekly (first next week)
- collaboration
- independent homeworks
- grading requirement
- books.
- question: scribing?

Randomized algorithms: make random choices during run. Main benefits:

- speed: may be faster than any deterministic
- even if not faster, often simpler (quicksort)
- sometimes, randomized is best
- sometime, randomized idea leads to deterministic algorithm

Distinguish average-case analysis

- Probabilistic analysis assuming random input
- randomized algorithms do not assume random inputs
- so analyses are more applicable

We don’t really use random numbers. But randomized algorithms break patterns we don’t know are there.

- deterministic algorithm: works well except a few specific cases.
- But those are the ones you will encounter (Murphy)!
• randomized: almost always works well on any case
• but sometimes does bad on any case, so risky for life-threatening errors.

Course objective:
• Randomization is a general technique. Applies to all areas of CS.
• Underlying it is a common set of tools.
• Goal is to give familiarity with those tools so you can apply them to your own problems.
• To present tools, we draw applications from many areas of CS: data structures, geometric algos, graph algos, parallel and distributed, number theory.
• Because so many, only a brief taste of each.
• But sufficient to go on alone.

Basic methodologies.
• Avoiding adversarial inputs
 – sorted quicksort list
 – a kind of random reordering (geometry—BSP)
 – hashing to same buckets
 – online algorithms
 – note: “adversarial” may mean “well structured” i.e. natural

• fingerprinting/verification
 – generate short random fingerprints for things
 – faster than comparing things
 – almost every fingerprint works
 – so a random one works

• random sampling. graph algos, computational geometry, median
– fast way to find “typical” members
– solve representative subproblem fast
– extrapolate to solution of original problem

• load balancing
 – randomization spreads things out uniformly
 – parallel algs, routing, hashing

• symmetry breaking
 – random decisions keep everyone from doing the same thing
 – ethernet
 – deadlocks avoidance in distributed systems (MUST randomize)

• Probabilistic existence proofs
 – thought experiment
 – prove an object is built with positive probability
 – guarantees object exists
 – makes search for algo worthwhile.

Today: 2 really basic principles:

• linearity of expectation

• product of event probabilities (independence)

Then some fundamental ideas:

• Kinds of randomized algorithms

• a bit of complexity
Quicksort

Items S_1, \ldots, S_n to be sorted

- suppose could pick middle element:

$$T(n) = 2T(n/2) + O(n) = O(n \log n)$$

works since divides into much smaller subproblems

- picking middle is hard. But an almost middle element is OK.

- pick random element. “probably” near middle and divides problem in two

- bound expected number of comparisons C

- $X_{ij} = 1$ if compare i to j

- linearity of expectation: $E[C] = \sum E[X_{ij}]$

 - $E[X_{ij}] = p_{ij}$

 - Consider smallest recursive call involving both i and j.

 - pivot must be one of S_i, \ldots, S_j. all equally likely

 - S_i and S_j get compared if pivot is S_i or S_j

 - probability is at most $2/(j - i + 1)$ (may have outer elements)

- analysis:

$$\sum_{i=1}^{n} \sum_{j>i}^{n} p_{ij} \leq \sum_{i=1}^{n} \sum_{j>i}^{n} \frac{2}{(j - i + 1)}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n-i+1} \frac{2}{k}$$

$$\leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k}$$

$$\leq 2nH_n$$
(Define \(H_n \), claim \(O(\log n) \).)

\[
= O(n \log n).
\]

- analysis holds for every input, doesn’t assume random input
- we proved expected. can show high probability
- how did we pick a random elements? Depends on model.
- algorithm always works, but might be slow.

BSP

- linearity of expectation. hat check problem
- Rendering an image
 - render a collection of polygons (lines)
 - painters algorithm: draw from back to front; let front overwrite
 - need to figure out order with respect to user
- define BSP.
 - BSP is a data structure that makes order determination easy
 - Build in preprocess step, then render fast.
 - Choose any hyperplane (root of tree), split lines onto correct side of hyperplane, recurse
 - If user is on side 1 of hyperplane, then nothing on side 2 blocks side 1, so paint it first. Recurse.
 - time=\(\text{BSP size} \)
- sometimes must split to build BSP
- how limit splits?
- autopartitions
- random auto
• analysis
 - \(\text{index}(u, v) = k\) if \(k\) lines block \(v\) from \(u\)
 - \(u \vdash v\) if \(v\) cut by \(u\) auto
 - probability \(1/(1 + \text{index}(u, v))\).
 - tree size is (by linearity of \(E\))
 \[
 n + \sum 1/\text{index}(u, v) \leq \sum_u 2H_n
 \]
• result: exists size \(O(n \log n)\) auto
• gives randomized construction
• equally important, gives probabilistic existence proof of a small BSP
• so might hope to find deterministically.

MinCut
• the problem
• contraction
• conditionally independent events
• give/analyze
• repetition for better success probability (independent events)
• faster implementation later

Monte Carlo vs. Las Vegas
• turn LV to MC by truncating
• turn MC to LV by certifying.
• if can’t certify, dangerous!