Admin
Discuss collaboration.
Discuss median finding.

Median finding.

change from book. List L

- idea; **random sampling**
- median of sample looks like median of whole. neighborhood.
- Algorithm
 - choose s samples *with replacement*
 - take fences before and after sample median
 - keep items between fences. sort.
- Analysis
 - claim (i) median within fences and (ii) few items between fences.
 - Without loss of generality, L contains $1, \ldots, n$.
 - Samples s_1, \ldots, s_m in sorted order.
 - lemma: S_r near rn/s.
 - Chernoff: $\forall k$, number elements before k is $(1 \pm \epsilon)ks/n$, where $\epsilon = \sqrt{(6n \ln n)/ks}$.
 - Thus, when $k > n/4$, error $ks/n(1 \pm \sqrt{24 \ln n}/s) = ks/n(1 \pm \epsilon)$.
 - $S_{(1+\epsilon)ks/n} > k$
 - $S_r > rn/s(1 + \epsilon)$
 - $S_r < rn/s(1 - \epsilon)$.
 - Let $r_0 = \frac{s}{2}(1 - \epsilon)$
 - Then w.h.p., $\frac{n}{2}(1 - \epsilon)/(1 + \epsilon) < S_{r_0} < n/2$
 - Let $r_1 = \frac{s}{2}(1 - \epsilon)$
 - Then $S_{r_1} > n/2$
 - But $S_{r_1} - S_{r_0} = O(\epsilon n)$

- Number of elements to sort: s
- Set containing median: $O(\epsilon n) = O(n\sqrt{\log n}/s)$.
- balance: $\tilde{O}(n^{2/3})$ in both steps.

Randomized is strictly better:
- Optimum deterministic: $\geq (2 + \epsilon)n$
- Optimum randomized: $\leq (3/2)n + o(n)$
Routing

- synchronous message passing
- bidirectional links, one message per step
- queues on links
- permutation routing
- oblivious algorithms only consider self packet.

Theorem Any deterministic oblivious permutation routing requires $\Omega(\sqrt{N/d})$ steps on an N node degree d machine.

- reason: some edge has lots of paths through it.
- homework: special case

- Hypercube.
 - N nodes, $n = \log_2 N$ dimensions
 - bit representation
 - natural routing: bit fixing (left to right)
 - paths of length n
 - Nn edges for N length n paths
 - lower bound n

- Routing algorithms:
 - $O(n) = O(\log N)$ randomized
 - beats $\Omega(\sqrt{N/n})$ deterministic
 - how? load balance paths.

- Random destination (not permutation!), bit correction
 - Average case, but a good start.
 - $T(e_i) =$ number of paths using e_i
 - by symmetry, all $E[T(e_i)]$ equal
 - expected path length $n/2$
 - LOE: expected total path length $Nn/2$
 - nN edges in hypercube
 - $E[T(e_i)] = 1/2$
 - Chernoff: every edge gets $\leq 3n$ (prob $1 - 1/N$)

- Naive usage:
- n phases, one per bit
- $3n$ time per phase
- $O(n^2)$ total
- From intermediate destination, route back!
- routes worst case permutation in $O(n^2)$.

- What if don’t wait for next phase?
 - FIFO queuing
 - total time is length plus delay
 - Expected delay $\leq E[\sum T(e_i)] = n/2$.
 - Chernoff bound? no. dependence of $T(e_i)$.

- High prob. bound:
 - consider paths sharing route (e_0, \ldots, e_k)
 - Suppose S packets intersect route (use at least one of e_i)
 - claim delay $\leq |S|
 - Suppose true: Let $H_{ij} = 1$ if j hits i’s (fixed) route.
 $$E[|S|] = E[\sum H_{ij}] \leq E[\sum T(e_i)] \leq n/2$$
 - Now Chernoff does apply (H_{ij} independent for fixed i-route).
 - $|S| = O(n)$ w.p. $1 - 2^{-5n}$, so $O(n)$ delay for all 2^n paths.

- Lag argument
 - Exercise: once packets separate, don’t rejoin
 - Route for i $\rho_i = (e_1, \ldots, e_k)$
 - charge each delay to a departure of a packet from ρ_i.
 - Packet waiting to follow e_j at time t has: **Lag** $t - j$
 - Delay of v_i is lag crossing e_k
 - When v_i delay rises to $l + 1$, some packet from S has lag l (since crosses e_j instead of v_i).
 - Consider last time t' where a lag-l packet exists
 * some lag-l packet w crosses $e_{j'}$ at t' (others increase to lag-$(l + 1)$)
 * w leaves at this point (if not, then l at $e_{j'+1}$ next time)
 * charge one delay to w.

 3