Deep Learning
Ronald Parr
CompSci 570

Estimating the Gradient
• Recall: Backpropagation is gradient descent
• Computing exact gradient of the loss function requires summing over all training samples
• Why not update after each training sample?
 – Called online or stochastic gradient
 – Possibility of more efficient learning
 • Suppose you need only a small number of samples to estimate the gradient correctly?
 • Why do lots of unnecessary computation?
 – But, theoretically, can be unstable unless you use a small step size

Batch/Minibatch Methods
• Find a sweet spot by estimating the gradient using a subset of the samples
• Randomly sample subsets of the training data and sum gradient computations over all samples in the subset
• Take advantage of parallel architectures (multicore/GPU)
• Still requires careful selection of step size and step size adjustment schedule—art vs. science

Tricks for Speeding Things Up
• Second order methods, e.g., Newton’s method
 – may be computationally intensive in high dimensions
• Conjugate gradient is more computationally efficient, though not yet widely used
• Momentum: Use a combination of previous gradients to smooth out oscillations
Tricks For Breaking Down Problems

• Built up deep networks by training shallow networks, then feeding their output into new layers (may help with vanishing gradient and other problems) – a form of “pretraining”

• Train the network to solve “easier” problems first, then train on harder problems – curriculum learning, a form of “shaping”

Convolutional Neural Networks (CNNs)

• Championed by LeCun (1998)

• Originally used for handwriting recognition

• Now used in state of the art systems in many computer vision applications

• Well-suited to data with a grid-like structure

Convolutions

• What is a convolution?

• Way to combine two functions, e.g., x and w:

\[s(t) = \int x(a)w(t-a)da \]

• Discrete version

\[s(t) = \sum x(a)w(t-a) \]

Entire Domain

Convolutions on Grids

• For image I

• Convolution “kernel” K:

\[S(i,j) = \sum_m \sum_n I(m,n)K(i-m,j-n) = \sum_m \sum_n I(i-m,j-n)K(m,n) \]
Convolution on Grid Example

Application to Images & Nets

- Images have huge input space: 1000x1000=1M
- Fully connected layers = huge number of weights, slow training

- Convolutional layers reduce connectivity by connecting only an mxn window around each pixel
- Use weight sharing to learn a common set of weights so that same convolution is applied everywhere

Additional Stages

- Convolutional stages feed to detector stages
- Detectors are nonlinear
- Detectors feed to pool stages
- Pooling stages summarizing upstream nodes, e.g., average, 2-norm, max (should we be worried that max isn’t differentiable?)

Example Convolutional Network

From, Convolutional Networks for Images, Speech, and Time-Series, LeCun & Bengio

N.B.: Subsampling = averaging
Why This Works

• ConvNets use weight sharing to reduce the number of parameters learned – mitigates problems with big networks

• Can be structured to learn scale and position invariant feature detectors

• Final layers then combine feature to learn the target function

• Can be viewed as doing simultaneous feature selection and classification

ConvNets in Practice

• Most successful applications still require some thought about the structure – not yet a turnkey solution

• Number of convolutional layers, form of pooling and detecting units may be application specific