Unsupervised Learning

- Supervised learning: Data <x₁, x₂, ... xₙ, y>
- Unsupervised Learning: Data <x₁, x₂, ... xₙ>

- So, what's the big deal?
- Isn't y just another feature?
- No explicit performance objective
 - Bad news: Problem not necessarily well defined without further assumptions
 - Good news: Results can be useful for more than predicting y

Model Learning

- Produce a global summary of the data
- Not an exact copy
- Assume data are sampled from a larger set that has some easily summarized properties
 - Cluster analysis:
 - What things should be grouped together?
 - Density estimation:
 - How are things distributed in space?

Cluster Analysis

- Decomposition or partition of data into groups where
 - the points in one group are similar to each other
 - and as different as possible from the points in other groups

Examples of Clustering Applications

- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Land use: Identification of areas of similar land use in an earth observation database
- Insurance: Identifying groups of motor insurance policy holders with similar claim cost
- City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults

Example

- Households:
 - location, income, number of children, rent/own, crime rate, number of cars

- Appropriate clustering may depend on use:
 - Goal to minimize delivery time ⇒ cluster by location
 - others?
 - (Suggests problem is ill defined)
Clustering

- Decomposition or partition of data into groups so that:
 - Points in one group are similar to each other.
 - Are as different as possible from the points in other groups.
- Measure of distance is fundamental.
- Explicit representation:
 - $D(x(i), x(j))$ for each x.
 - Only feasible for small domains.
- Implicit representation by measurement:
 - Distance computed from features.
 - We've already seen a number of different ways of doing this.

Families of Clustering Algorithms

- Partition-based methods
 - E.g., K-means.
- Hierarchical clustering
 - E.g., hierarchical agglomerative clustering.
- Probabilistic model-based clustering
 - E.g., mixture models.
- Graph-based Methods
 - E.g., spectral methods.

Possible Scoring Functions

- Score function:
 - Clusters compact \Rightarrow minimize within cluster distance, $wc(C)$.
 - Clusters should be far apart \Rightarrow maximize distance between clusters, $bc(C)$.
- Given a clustering C, assign cluster centers, c_i.
 - If points belong to space where means make sense, we can use the centroid of the points in the cluster:
 \[
 c_i = \frac{1}{|C_i|} \sum_{x \in C_i} x
 \]
- $wc(C) = \text{sum-of-squares within cluster distance}$
 \[
 wc(C) = \sum_{i=1}^{k} \sum_{x \in C_i} d(x, c_i)^2
 \]
- $bc(C) = \text{distance between clusters}$
 \[
 bc(C) = \sum_{i=1}^{k} \sum_{x \in C_i} d(c_i, c_j)
 \]
- $\text{Score}(C) = f(wc(C), bc(C))$.

Clustering

- Huge body of work.
 (aka unsupervised learning, segmentation, …)
- Major difficulty: Measuring success.
- Evaluation depends on goals.
 - If goal is to find 'interesting' clusters, this is rather difficult to quantify.
 - However, for some probabilistic methods, there are tools for validating our models.

Partition-based Clustering Algorithms

- Given set of n data points $D = \{x^{(1)}, ..., x^{(n)}\}$ partition data into k clusters $C = \{C_1, ..., C_k\}$ such that each $x^{(i)}$ is assigned to a unique C_i and Score(C, D) is minimized/maximized.
- Combinatorial optimization: searching for allocation of n objects into k classes that maximizes score function.
- Number of possible allocations $= k^n$.
- Exhaustive search is intractable.
- Resort to iterative improvement.

K-means

- Start with randomly chosen cluster centers.
- Assign points to closest cluster.
- Recompute cluster centers.
- Reassign points.
- Repeat until no changes.
K-means example

Complexity

- Does algorithm terminate?
- Does algorithm converge to optimal clustering?
- Time complexity one iteration?

Understanding k-Means

- Models data as coming from spherical Gaussians centered at cluster centers
- $\log P(data) \sim \text{sum of squared distances}$

$$P(x_i \in c_j) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(x_i - c_j)^2}{2\sigma^2} \right)$$

$$P(data) = \prod_i P(x_i \in c_{\text{clustering}(i)})$$

$$\log(P(data)) = d \sum_i (x_i - c_{\text{clustering}(i)})^2$$
Understanding k-Means

- Each step of k-Means increases \(\log(P(\text{data})) \)
 - Reassigning
 - Recomputing means

- Fixed number of assignments and monotonic score implies convergence

Algorithm Variations

- Recompute centroid as soon as a point is reassigned
- Allow merge and split of clusters
- Methods for improving solution accuracy?
 - Many cases where means do not make sense
 - k-medoids – use one of the data points as center
 - Categorical data
 - What if data set is too large for algorithm to be tractable?
 - Compress data by replacing groups of objects by 'condensed representation'
 - Sub-sample data