NP Hardness & CSPs
CPS 270
Ron Parr

NP-hardness
- Many problems in AI are NP-hard (or worse)
- What does this mean?
- These are some of the hardest problems in CS
- Identifying a problem as NP hard means:
 - You probably shouldn’t waste time trying to find a polynomial time solution
 - If you find a polynomial time solution, either
 - You have a bug
 - Find a place on your shelf for your Turing award
- NP hardness is a major triumph (and failure) for computer science theory

What is the class NP?
- A class of decision problems (Yes/No)
- Solutions can be verified in polynomial time
- Examples:
 - Graph coloring:
 - Sortedness: [1 2 3 4 5 8 7]

What is NP completeness?
- All NP complete problems can be “reduced” to each other in polynomial time
- What is a reduction?
 - Use one problem to solve another
 - A is reduced to B, if we can use B to solve A:

Why care about NP-completeness?
- Solving any one NP-complete problem gives you the key to all others
- All NP-complete problems are, in a sense, equivalent
- Insight into solving any one gives you insight into solving a vast array of problems of extraordinary practical and economic significance

Proving NP Completeness
- Want to prove problem C is NP complete
 - Show that C is in NP
 - Find known NP complete problem reducible to C
 - Is graph color NP-complete?
 - Prove that graph coloring is in NP
 - Verify solution in poly time
 - Easy
 - Reduce known NP complete problem to TSPs
 - Much more challenging
 - Reduction from SAT
The First NP Complete Problem (Cook 1971)

• SAT:
 \((X_1 \lor \overline{X}_7 \lor X_{13}) \land (X_2 \lor X_{12} \lor X_{23}) \land \ldots\)
• Want to find an assignment to all variables that makes this expression evaluate to true
• NP-complete for clauses of size 3 or greater
• How would you prove this?

What is NP Hardness?

• NP hardness is weaker than NP completeness
• NP hard if an NP complete problem is reducible to it
• NP completeness = NP hardness + NP membership
• Consider the problem \#SAT
 – How many satisfying assignments to:
 \((X_1 \lor \overline{X}_7 \lor X_{13}) \land (X_2 \lor X_{12} \lor X_{23}) \land \ldots\)
 – Is this in NP?
 – Is it NP-hard?

#SAT is NP-hard

• Theorem: #SAT is NP hard
• Proof:
 – Reduce SAT to #SAT

NP-Completeness Summary

• NP-completeness tells us that a problem belongs to class of similar, hard problems.
• What if you find that a problem is NP hard?
 – Look for good approximations
 – Find different measures of complexity
 – Look for tractable subclasses
 – Use heuristics

CSPs

• What is a CSP?
• One view: Search with special goal criteria
• CSP definition (general):
 – Variables \(X_1, \ldots, X_n\)
 – Variable \(X_i\) has domain \(D_i\)
 – Constraints \(C_1, \ldots, C_m\)
 – Solution: Each variable gets a value from its domain such that no constraints violated
• CSP examples...
 – http://4c.ucc.ie/~tw/cspilib/

Our Restricted View

• Variables \(X_1, \ldots, X_n\)
• A binary constraint, lists permitted assignments to pairs of variables
• A binary constraint between binary variables is a table of size 4, listing legal assignments for all 4 combinations.
• A k-ary constraint lists legal assignments to k variables at a time.
• How large is a k-ary constraint for binary variables?

Note: More expressive languages are often used.
CSP Example

Graph coloring:

Problem: Assign Red, Green and Blue so that no 2 adjacent regions have the same color.

Example Contd.

- Variables: \{WA, NT, Q, SA, NSW, V, T\}
- Domains: \{R,G,B\}
- Constraints:
 For WA – NT: \{(R,G), (R,B), (G,B), (G,R), (B,R), (B,G)\}
- We have a table for each adjacent pair
- Are our constraints binary?
- Can every CSP be viewed as a graph problem?

Constraint Graph

Enumerate all legal combinations of WA and SA (ignoring other regions)

CSPs as Search

Nodes: Partial Assignments Actions: Make Assignments

Backtracking

- Backtracking is the most obvious (and widely used) method for solving CSPs:
 - Search forward by assigning values to variables
 - If stuck, undo the most recent assignment and try again
 - Repeat until satisfying assignment found or all combinations tried
- Embellishments
 - Methods for picking next variable to assign
 - Most constrained
 - Least constrained
 - Backjumping

NP-Completeness of CSPs

- Are CSPs in NP?
- Are they NP-hard?
- CSPs and graph coloring are equivalent
- Convert any graph coloring problem to CSP
- Convert any CSP to graph coloring
- Graph coloring is NP-complete
- CSPs are NP-complete
- End of the story or just the beginning?
Issues

• What are good heuristics?
 – Often good to think of this as a local search
 – Focus on choosing actions carefully, instead of pruning nodes carefully
• Can we develop heuristics that apply to the entire class of problems, not just specific instances?
• What’s the best we can hope for?

Constraint Graphs

• Constraint graphs are important because they capture the structural relationships between the variables

 • IMPORTANT CONCEPT: Not all instances of a hard problem class are hard
 – Structural features give insight into hardness
 – Group problems within class by structural features
 – New measure of problem complexity

Node Consistency

• Check all nodes for inconsistencies
• For each node, there must exist at least one valid assignment given assignments to neighbors
• Rules out some bad assignments quickly

Arc Consistency

• Check all arcs for inconsistencies
• For each value at the start, there must exist a consistent value at the terminus
• Catches many inconsistencies
• Can use to iteratively reduce number of possible assignments to each variable (constraint propagation)

Generalized Arc Consistency

• k-consistency
 – Consider sets of k variables
 – For each setting of a k-1 subset
 – Must exist a consistent setting for the kth variable
• Check for more distant influences
• 1-consistency = node consistency
• 2 consistency = arc consistency

Facts About Arc Consistency

• What if a graph with n variables is n-consistent?

• What is the worst-case cost of checking n-consistency?
Linear Constraint Structures

Are these easy or hard?

Suppose our chain is arc consistent...

Properties of Chains

Theorem: Arc consistent linear constraint graphs are n consistent.

Properties of Trees

Theorem: Arc consistent constraint trees are n consistent.

Variable Elimination

Domain(NT,SA) = \{(blue, green), (blue, red), (green, blue), (green, red), (red, blue), (red, green)\}

Eliminate Q

Domain(NT,SA,NST) = \{(blue, green, blue), (blue, red, blue), (red, blue, red), (red, green, red), (green, blue, green), (green, red, green)\}

Simplify

Domain(NT,SA,NST) = \{(blue, green, blue), (blue, red, blue), (red, blue, red), (red, green, red), (green, blue, green), (green, red, green)\}
Finish

Domain(SA, NSW) =
{(blue, green), (blue, red),
(green, blue), (green, red),
(red, blue), (red, green)}

Can identify all settings of SA, V, NSW for which there is guaranteed to be a consistent setting of the remaining variables.

Q: How do we get the settings of the other variables?

Variable Elimination

Var_elim_CSP_solve (vars, constraints)
Q = queue of all variables
i = length(vars)+1
While not(empty(Q))
 X = pop(Q)
 Xi = merge(X, neighbors(X))
 Simplify Xi
 remove_from_Q(Q, neighbors(X))
 add_to_Q(Q, Xi)
 i = i+1

Note: Merge operation can be tricky to implement, depending upon constraint language.

Variable Elimination Issues

• How expensive is this?

• Is it sensitive to elimination ordering?

Variable Elimination Orderings

Is it better to start at the edges and work in, or at the center and work out?

Variable Elimination Facts

• You can figure out the cost of a particular elimination ordering without actually constructing the tables
• Finding optimal elimination ordering is NP hard
• Good heuristics for finding near optimal orderings
• Another structural complexity measure
• Investment in finding good ordering can be amortized

Structural Complexity

• Structural complexity is a somewhat different view of computational complexity: depends upon problem features, not problem class
• For many problems structural complexity is quite manageable
• Idea: Why not convert other NP-hard problems to CSPs and use structural complexity measures, CSP algorithms to solve?

\[2^{poly(k)} >> 2^k\]
CSP Summary

- CSPs are a specialized language for describing certain types of decision problems
- We can formulate special heuristics and methods for problems that can be described in this language
- In general, CSPs are NP hard
- We can use structural measures of complexity to figure out which ones are really hard