Decision Trees

• Decision trees try to construct small, consistent hypothesis
• Suppose our concept is “blue cube”

Facts About Decision Trees

• If the concept has \(d \) conjuncts, there will be a decision tree for this concept with depth \(d \)
• Decision trees are very bad for some functions:
 – Parity function
 – Majority function
• For errorless data, you can always construct a decision tree that correctly labels every element of the training set, but it may be exponential in size

Decision Tree Algorithms

• Aim for:
 – Small decision trees
 – Robustness to misclassification
• Constructing the shortest decision tree is intractable
• Standard approaches are greedy
• Classical approach is to split tree using an information-theoretic criterion

Growing Decision Trees

Repeat until no good leaves
Pick leaf
Split = choose_variable(variabes – all_parents(leaf))
For val in domain(split)
 new_leaf = new_leaf(split=val)
 new_leaf.instances = leaf.stances s.t. split=val
For leaf in tree
 classification(leaf) = majority_classification(leaf)

Information Theory

• Roughly speaking, information theory measures the expected number of bits needed to communicate information from one person to another
• Suppose person1 is flipping a coin with bias \(p \)
• Person1 wants to tell person2 the sequence of results
• What is the expected number of bits person 1 will send to person 2?
• Note relation to compression
Information Content

\[I(p_1, \ldots, p_n) = E(\# \text{bits}) = \sum_{i=1}^{n} -p_i \log_2(p_i) \]

For an unbiased coin, the information content is 1.
For a totally biased coin, the information content is 0.

Information Content of a Leaf

\[I\left(\frac{p}{p+n}, \frac{n}{p+n}\right) = -\frac{p}{p+n} \log_2\left(\frac{p}{p+n}\right) - \frac{n}{p+n} \log_2\left(\frac{n}{p+n}\right) \]

Information gain of a split:

\[I\left(\frac{p}{p+n}, \frac{n}{p+n}\right) - \sum_{i=1}^{n} \frac{p_i + n_i}{p + n} I\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right) \]

Gain Example

- Suppose we have seen:
 - Red tetrahedron(f), Blue sphere(t), Blue cone(t), green cone(f)
- Is it better to split on shape or color?
- Information of original set is: 1
- Information gain of splitting on cone:
- Information gain of splitting on blue:

Favoring Small Examples

- Information gain (and other splitting criteria)
 - Are greedy
 - Favor small trees
- This makes representation an issue yet again
- Suppose you want to learn “parity(+) and blue”
- Hard to learn with decision trees, but
 - If we treat parity like a state variable, then it’s easy
 - Call these derived variables features or attributes

Decision Tree Conclusion

- Simple method
- Works surprisingly well in many cases
- Issues:
 - Continuous variables
 - Missing values
 - Expressive power