Least Squares Policy Iteration

Ronald Parr
CPS 270

Joint work with: Michail Lagoudakis

Overview

• Motivation

• LSPI
 – Derivation from LSTD
 – Experimental results

Why We Love RL

• Ideally, RL agents:
 – Learn continuously by trial and error
 – Correctly attribute credit and blame when causes and effects are not co-temporal
 – Converge to optimal behavior
• RL connects to beautiful theory
 – Markov Decision Processes (MDPs)
 – Convergence of stochastic estimators

Why We Hate RL

• Use for real problems often frustrates
• Reasons:
 – Real problems have huge state spaces
 • Impossible to visit every state
 • Impossible to represent solution exactly
 – Approximation methods are dodgy
 • Require human intervention
 • May not converge
 • Sloomowww debug cycle

The RL World

• For practical problems RL often involves an “outer loop” with a clever grad student in control:
 1. Choose an approximation architecture
 2. Run experiments
 – Convergence/Oscillation
 – Good performance/Bad performance
 3. Refine approximation architecture

Consequence: RL rarely applied “live”

Example: TD-Gammon

• Brilliant success for RL
 – Plays at level of best human players
 – Inspired a generation of RL researchers
• But…
 – Required hand crafted features
 – Required about 1.5 million games of experience
 – Hard to reproduce:
 • For other implementations
 • For other games
What can we do to help?

- Get more/better grad students (hard)
- Automatic approximation architecture selection
- Shorten the cycle
 - Provide more stable RL algorithm (LSPI)
 - Reduce data dependence (LSPI)

LSPI Teaser

- LSPI is stable and efficient
 - Never diverges or gives meaningless answers
 - Uses efficient linear algebra routines
- LSPI reuses data
 - Remembers past experiences
 - All past experiences relevant to all policies

Optimal Value Function, Policy

Optimal value function, policy satisfy Bellman equation:

\[
V^*(s) = \max_a R(s,a) + \gamma \sum P(s'|s,a)V^*(s') \\
\pi^*(s) = \arg \max_a R(s,a) + \gamma \sum P(s'|s,a)V^*(s')
\]

- If P,R are known, solve MDP:
 - VI, PI, LP
 - Poly time in number of states
- Otherwise, we use RL

Intuitions for VFA

- Leverage generalization power of machine learning to produce approximate values for all states while considering only a tiny fraction
- Dramatic success in some areas
 - Backgammon
 - Elevator scheduling
- Dramatically frustrating in others...

Implementing VFA

- Can’t represent Value Function as a big vector
- Use (parametric) function approximator
 - Neural network
 - Linear regression (least squares)
 - Nearest neighbor (with interpolation)
- (Typically) sample a subset of the the states
- Use function approximation to “generalize”

Approximate Solutions

- The standard Bellman equation:
 \[
 V^*(s) = \max_a R(s,a) + \gamma \sum P(s'|s,a)V^*(s')
 \]
- With approximation
 \[
 \hat{V}(s) = \Pi \left[\max_a R(s,a) + \gamma \sum P(s'|s,a)\hat{V}(s') \right]
 \]
- \(\Pi\) is a projection operator
 - Projects into space of representable value functions
 - Often implicit
Problem 1: Stability

- Exact value iteration, Q-learning stability ensured by contraction of:
 \[V^{i+1}(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V'(s') \]
- Is this a contraction:
 \[\hat{V}^{i+1}(s) = \prod \left[\max_a R(s,a) + \gamma \sum_a P(s'|s,a)\hat{V}'(s') \right] \]

Stability Problem

Problem: Most VFA methods are unstable

\[\text{No rewards, } \gamma = 0.9: V^* = 0 \]

Example: Bertsekas & Tsitsiklis 1996

Least Squares Approximation

Restrict \(V \) to linear functions:

\[V(x) = \theta s \]

Find \(\theta \) s.t. \(V(s_1) = \theta, V(s_2) = 2\theta \)

Counterintuitive Result: If we do a least squares fit of \(\theta \)
 \[\hat{\theta}^{i+1} = 1.08 \theta \]

Unbounded Growth of \(V \)

Understanding the Problem

- What went wrong?
 - VI reduces error in maximum norm
 - Least squares (= projection) non-expansive in \(L_2 \)
 - May increase maximum norm distance
 - Grows max norm error at faster rate than VI
- Can’t this be fixed by sampling trajectories?
 - Yes (VI is also a projection in weighted \(L_2 \))
 - Dubious usefulness for policy improvement!

Problem 2: Efficiency

- Most RL methods are gradient based
- Q-learning:
 \[Q^{i+1}(s,a) = (1-\alpha)Q^i(s,a) + \alpha (r + \gamma V'(s',a)) \]
 \[V'(s',a) = \max_a \hat{Q}'(s,a) \]
- Convergence requires:
 - Small steps (small \(\alpha \))
 - Visiting every state infinitely often
Overview

- Motivation
- LSPI
 - Derivation from LSTD
 - Experimental results

How does LSPI fix these?

- LSPI is based on LSTD
- Policy evaluation alg. by Bratke & Barto 96
- Stability:
 - LSTD directly solves for the fixed point of the approximate Bellman equation
 - With SVD, this is always well defined
- Data efficiency
 - LSTD finds best solution for any finite data set
 - Single pass over data
 - Can be implemented incrementally

OK, What’s LSTD?

- Least Squares Temporal Difference Learning
- Linear value function approximation
 \[\hat{V}(s) = \sum w_i h_i(s) \]
- NOT necessarily linear in state variables
- Each \(h_i \) can be an arbitrary function
- Compare with neural nets

Suppose we know V*

- Want:
 \[A w \approx V^* \]
- Projection minimizes squared error
 \[w = (A^T A)^{-1} A^T V^* \]
 Textbook least squares projection

But we don’t know V*…

- Require consistency:
 \[\hat{V}^* = \Pi [R(s, a) + \gamma P \hat{V}^*] \]
- Substituting least squares projection
 \[Aw = A(A^T A)^{-1} A^T (R(s, a) + \gamma P Aw) \]
- Solving for \(w \)
 \[w = (A^T A - A^T PA)^{-1} A^T R \]
Almost there…

\[w = (A^T A - A^T PA)^{-1} A^T R \]

- Matrix to invert is only k x k
- But…
 - Expensive to construct matrix
 - We don’t know P
 - We don’t know R

Using Samples for A

Idea: Replace enumeration of states with sampled states

Using Samples for PA

Idea: Replace expectation over next states with sampled next states.

Putting it Together

• LSTD needs to compute:
 \[w = (A^T A - A^T PA)^{-1} A^T R \]
 • The hard part of which is the k x k matrix:
 \[B = A^T A - A^T PA \]
 • For each (s,a,r,s’) sample:
 \[B_{ij} \leftarrow B_{ij} + h_i(s) h_j(s) + h_i(s) h_j(s’) \]

LSTD Summary

- Does O(k^2) work per datum
- Approaches model-based answer in limit
- Finding fixed point requires inverting matrix

• Fixed point almost always exists
• Can use SVM if B is singular
• Stable; efficient

Policy Iteration with LSTD

Guess \(\hat{V}(s, w) \)

\[\pi_{i+1} = \text{greedy}(\hat{V}(s, w)) \]

\(\hat{V}_{i+1}(s, w) = \text{value of acting on } \pi_{i+1} \)

Increment i
Repeat until??

Use LSTD here?
What Breaks?

• No way to pick actions

• Approximation is biased by current policy
 – We only approximate values of states we see
 – LSTD is a weighted approximation

• Learn-forget cycle of policy iteration
 – Drive off the road; learn that it’s bad
 – New policy never does this; forgets that it’s bad

LSPI

• LSPI makes LSTD suitable for Policy Iteration
 LSTD: state → state
 LSPI: (state, action) → (state, action)
 Similar to Q learning
 Implementation is subtle
 • Has deep consequences:
 – Disconnects policy evaluation from data collection
 – Permits reuse of data across iterations

Implementing LSPI

• Both LSTD and LSPI must compute:
 \[B = A^T A - A^T PA \]
 • But LSPI has a factor of (#A) more basis fns

• Duplicate basis functions for each action:
 – \[h_{a1}^*(s) = h(s) \text{ if } a_1 \text{ taken, } 0 \text{ otherwise,} \]
 – \[h_{a2}^*(s) = h(s) \text{ if } a_2 \text{ taken, } 0 \text{ otherwise, etc} \]

• For each (s,a,r,s’) sample:
 \[B_j \leftarrow B_j + h_i^*(s)h_{j,a}^*(s) - h_i^*(s)h_{j,a}^{\pi(i)}(s) \]

Running LSPI

• Start w/random weights (= random policy)
• Collect a database of (s,a,r,s’) experiences
• Repeat
 – Evaluate current policy against database
 – Run LSPI to generate new set of weights
 – New weights imply new policy
 – Replace current weights with new weights
• Until convergence (or \(\epsilon \) weight change)

Results: Bicycle Riding

• Randlov and Alstrom simulator
• Watch random controller operate bike
• Collect ~60,000 (s,a,r,s’) samples
• Pick 20 simple basis functions (\(\times 5 \) actions)
• Make 5-10 passes over data (PI steps)

• Result:
 Controller that balances and rides to goal

Bicycle Trajectories
What about Q-learning?

- Bicycle “solved” using CMAC
 - CMAC is very expressive
 - Trajectories were not that tight
- Compare with same architecture
- Use experience replay for data efficiency

Q-learning Results

So, what’s the bad news?

- \((k \#A)^2\) can sometimes be big
 - Lots of storage
 - Matrix inversion can be expensive
- Linear VFA is “weak”
- Bicycle needed shaping
- Still haven’t solved
 - Feature selection
 - Exploration vs. Exploitation