CPS 270
Alternative Search Techniques
Ron Parr

Overview
- Memory-bounded Search
- Local Search
- Searching with Incomplete Information

Memory-bounded Search: Why?
- We run out of memory before we run out of time.
- Problem: Need to remember entire search horizon
- Solution: Remember only a partial search horizon
- Issue: Maintaining optimality, completeness
- Issue: How to minimize time penalty

Attempt 1: IDA*
- Iterative deepening A*
- Idea: Like IDDFS, but use the f cost as a cutoff
 - Cutoff all searches with $f > 1$, then $f > 2$, $f > 3$, etc.
 - Motivation: Cut off bad-looking branches early
- Problems:
 - Excessive node regeneration
 - Can still use a lot of memory

Attempt 2: RBFS
- Recursive best first search
- Objective: Linear space
- Idea: Remember best alternative
- Rewind, try alternatives if “best first” path gets too expensive
- Remember costs on the way back up

RBFS
Assume $h=1$, initially along this path.
Replace with $alt=11$
Return to best alternate.
Problem: Thrashing!
SMA*

- Idea: Use all of available memory
- Discard the worst leaf when memory starts to run out, to make room for new leaves
- Values get backed up to parents
- Optimal if solution fits in memory
- Complete
- Thrashing still possible

```
Replace with h=3
if we remove this node
```

Optimization

- Solution is more important than path
- Interested in minimizing or maximizing some function of the problem state
 - Find TSP tour with minimum cost
 - Optimize circuit layout
 - Schedule tasks as tightly as possible
- History of visits not worth the trouble

State Space Landscape

```
Local Changes
```

Goal: Find values of problem features that maximize objective function.

Note: This is conceptual. Often this function is not smooth.

Hill Climbing

- Idea: Try to climb up the state space landscape to find a setting of the problem features with high value.
- Approaches:
 - Steepest ascent
 - Stochastic – pick one of the good ones
 - First choice
- This is a *greedy* procedure

Limitations of Hill Climbing

- Local maxima
- Ridges – direction of ascent is at 45 degree angle to any of the local changes
- Plateaux – flat expanses

Getting Unstuck

- Random restarts
- Simulated annealing
 - Take downhill moves with small probability
 - Probability of moving downhill decreases with
 - Number of iterations
 - Steepness of downhill move
 - If system is "cooled" slowly enough, will find global optimal w.p. 1
 - Motivated by the annealing of metals and glass
 - settle into low energy configuration
Genetic Algorithms

- GAs are hot in some circles
- Biological metaphors to motivate search
- Organism is a word from a finite alphabet (organisms = states)
- Fitness of organism measures its performance on task (fitness = objective)
- Uses multiple organisms (parallel search)
- Uses mutation (random steps)

Crossover

Crossover is a distinguishing feature of GAs:

Randomly select organisms for “reproduction” in accordance with their fitness. More “fit” individuals are more likely to reproduce.

Reproduction involves crossover:

Organism 1: \[1 \ 1 \ 0 \ 0 \ 1 \ 0\]
Organism 2: \[0 \ 0 \ 0 \ 1 \ 0 \ 1\]
Offspring: \[1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0\]

Is this a good idea?

- Has worked well in some examples
- Can be very brittle
 - Representations must be carefully engineered
 - Sensitive to mutation rate
 - Sensitive to details of crossover mechanism
- For the same amount of work stochastic variants of hill climbing often do better
- Hard to analyze; needs more rigorous study

Continuous Spaces

- In continuous spaces, we don’t need to “probe” to find the values of local changes

 - If we have a closed-form expression for our objective function, we can use the calculus

 Suppose objective function is: \(f(x_1, y_1, x_2, y_2, x_3, y_3)\)

 - Gradient tells us direction and steepness of change
 \[\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}\right)\]

Following the Gradient

\[x = (x_1, y_1, x_2, y_2, x_3, y_3)\]

\[\text{x} \leftarrow \text{x} + \alpha \nabla f (\text{x})\]

For sufficiently small step sizes, this will converge to a region around a local optimum.

If gradient is hard to compute:
- Compute empirical gradient
 - Compare with classical hill climbing

Accelerating Gradient Ascent

- Many methods for choosing step size
- Newton Raphson method for finding roots:
 \[x \leftarrow x - \frac{g(x)}{g'(x)}\]

- Application to gradient ascent:
 \[x \leftarrow x - \nabla f(x)H_f^{-1}(x)\]
What's a Hessian?

\[H_f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{bmatrix} \]

Constrained Optimization

• Don’t forget about the easier cases
 – If the objective function is linear, things are easier
 – If linear constraints, solve as a linear program:
 – Maximize: \(f(x) \)
 – Subject to: \(Ax \leq b \)
 – Can be done in polynomial time
 – Can solve some quadratic programs in poly time

Searching with Partial Information

• Multiple state problems
 – Several possible initial states
• Contingency problems
 – Several possible outcomes for each action
• Exploration problems
 – Outcomes of actions not known \textit{a priori}, must be discovered by trying them

Example

• In some situations, initial state may not be detectable
 – Suppose sensors for a nuclear reactor fail
 – Need \textit{safe} shutdown sequence despite ignorance of some aspects of state
• This complicates search \textit{enormously}
• In the worst case, contingent solution could cover the entire state space

State Sets

• Idea:
 – Maintain a set of candidate states
 – Each search node represents a set of states
 – Can be hard to manage if state sets get large

Searching in Unknown Environments

• What if we don't know the consequences of actions before we try them?
• Often called on-line search
• Goal: Minimize competitive ratio
 – Actual distance/distance traveled if model known
 – Problematic if actions are irreversible
 – Problematic if links can have unbounded cost
Conclusions

- There are search algorithms for almost every situation
- Many problems can be formulated as search
- While search is a very general method, it can sometimes outperform special-purpose methods