Why do we need uncertainty?

- Reason: Sh*t happens
- Actions don’t have deterministic outcomes
- Can logic be the “language” of AI??
- Problem:
 - General logical statements are almost always false
 - Truthful and accurate statements about the world would seem to require an endless list of qualifications
 - How do you start a car?
 - Call this “The Qualification Problem”

The Qualification Problem

- Is this a real concern?
- YES!
- Systems that try to avoid dealing with uncertainty tend to be brittle.
- Plans fail
- Finding shortest path to goal isn’t that great if the path doesn’t really get you to the goal

Probabilities

- Natural way to represent uncertainty
- People have intuitive notions about probabilities
- Many of these are wrong or inconsistent
- Most people don’t get what probabilities mean
- Finer details of this question still debated

Understanding Probabilities

- Initially, probabilities are “relative frequencies”
- This works well for dice and coin flips
- For more complicated events, this is problematic
- What is the probability that the democrats will control Congress in 2008?
 - This event only happens once
 - We can’t count frequencies
 - Still seems like a meaningful question
- In general, all events are unique
- “Reference Class” problem

Probabilities and Beliefs

- Suppose I have rolled a die and hidden the outcome
- What is \(P(\text{Die} = 3) \)?
- Note that this is a statement about a belief, not a statement about the world
- The world is in exactly one state and it is in that state with probability 1
- Assigning truth values to probability statements is very tricky business
- Must reference speakers state of knowledge
Frequentism and Subjectivism

- Frequentists hold that probabilities must come from relative frequencies
- This is a purist viewpoint
- This is corrupted by the fact that relative frequencies are often unobtainable
- Often requires complicated and convoluted assumptions to come up with probabilities
- Subjectivists: probabilities are degrees of belief
 - Taints purity of probabilities
 - Often more practical

The Middle Ground

- No two events are ever identical, but
- No two events are ever totally unique either
- What is probability that Hillary Clinton will be elected President?
 - Women have run for VP before
 - People like Hillary Clinton have run before
 - Have background knowledge about the electorate

Why probabilities are good

- Subjectivists: probabilities are degrees of belief
- Are all degrees of belief probability?
 - AI has used many notions of belief:
 - Certainty Factors
 - Fuzzy Logic
 - Can prove that a person who holds a system of beliefs inconsistent with probability theory can be tricked into accepted a sequence of bets that is guaranteed to lose (Dutch book)

What are probabilities?

- Probabilities are defined over random variables
- Random variables are usually represented with capitals: X,Y,Z
- Random variables take on values from a finite domain d(X), d(Y), d(Z)
- We use lower case letters for values from domains
- X=x asserts: RV X has taken on value x
- P(x) is shorthand for P(X=x)

Domains

- In the simplest case, domains are boolean
- In general may include many different values
- Most general case: domains may be continuous
- This introduces some special complications

Kolmogorov’s axioms of probability

- \(0 \leq P(a) \leq 1\)
- \(P(\text{true}) = 1; P(\text{false})=0\)
- \(P(a \text{ or } b) = P(a) + P(b) - P(a \text{ and } b)\)
- Subtract to correct for double counting
- This is sufficient to completely specify probability theory for discrete variables
- Continuous variables need density functions
Atomic Events
- When several variables are involved, it is useful to think about atomic events.
- An atomic event is a complete assignment to variables in the domain (compare with states in search).
- Atomic events are mutually exclusive.
- Exhaust space of all possible events.
- For n binary variables, how many unique atomic events are there?

Joint Distributions
- A joint distribution is an assignment of probabilities to every possible atomic event.
- We can define all other probabilities in terms of the joint probabilities by marginalization:
 \[P(a) = P(a \land b) + P(a \land \neg b) \]
 \[P(a) = \sum_{e_i \in \alpha(a)} P(e_i) \]

Example
- $P(\text{cold} \land \text{headache}) = 0.4$
- $P(\neg\text{cold} \land \text{headache}) = 0.2$
- $P(\text{cold} \land \neg\text{headache}) = 0.3$
- $P(\neg\text{cold} \land \neg\text{headache}) = 0.1$

- What are $P(\text{cold})$ and $P(\text{headache})$?

Independence
- If A and B are independent:
 \[P(A \land B) = P(A)P(B) \]
- $P(\text{cold} \land \text{headache}) = 0.4$
- $P(\neg\text{cold} \land \text{headache}) = 0.2$
- $P(\text{cold} \land \neg\text{headache}) = 0.3$
- $P(\neg\text{cold} \land \neg\text{headache}) = 0.1$

- Are cold and headache independent?

Why Probabilities Are Messy
- Probabilities are not truth-functional.
- To compute $P(a \land b)$ we need to consult the joint distribution:
 - Sum out all of the other variables from the distribution.
 - It is not a function of $P(a)$ and $P(b)$.
- This fact led to many approximations methods such as certainty factors and fuzzy logic (Why?).
- Neat vs. Scruffy...
The Scruffy Trap

- Reasoning about probabilities correctly requires knowledge of the joint distribution
- This is exponentially large
- Very convenient to assume independence
- Assuming independence when there is not independence leads to incorrect answers
- Examples:
 - ANDing symptoms
 - ORing symptoms

Conditional Probabilities

- Ordinary probabilities for random variables: unconditional or prior probabilities
- \(P(a|b) = \frac{P(a \text{ AND } b)}{P(b)} \)
- This tells us the probability of a given that we know only \(b \)
- If we know \(c \) and \(d \), we can’t use \(P(a|b) \) directly
- Annoying, but solves the qualification problem...

Probability Solves the Qualification Problem

- \(P(\text{disease}|\text{symptom1}) \)
- This defines the probability of a disease given that we have observed only symptom1
- The conditioning bar indicates that the probability is defined with respect to a particular state of knowledge, not as an absolute thing

Conditioning and Belief Update

- Suppose we know \(P(\text{ABCDE}) \)
- Observe \(B=b \), update our beliefs:

\[
P(acde|b) = \frac{P(abcde)}{P(b)} = \sum_{ACDE} P(abCDE)
\]

Condition with Bayes’s Rule

\[
P(A \wedge B) = P(B \wedge A)
\]
\[
P(A|B)P(B) = P(B|A)P(A)
\]
\[
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
\]

Example Revisited

- \(P(\text{cold} \wedge \text{headache}) = 0.4 \)
- \(P(\neg\text{cold} \wedge \text{headache}) = 0.2 \)
- \(P(\text{cold} \wedge \neg\text{headache}) = 0.3 \)
- \(P(\neg\text{cold} \wedge \neg\text{headache}) = 0.1 \)
- What is \(P(\text{cold}|\text{headache}) \)?
Let’s Play Doctor

Suppose P(cold) = 0.7, P(headache) = 0.6
Suppose P(headache|cold) = 0.57
What is P(cold|headache)?

\[
P(c | h) = \frac{P(h|c)P(c)}{P(h)} = \frac{0.57 \times 0.7}{0.6} = 0.665
\]

IMPORTANT: Not always symmetric

Expectation

Most of us use expectation in some form when we compute averages
What is the average value of a die roll?

\[
(1+2+3+4+5+6)/6 = 3.5
\]

Bias

What if not all events are equally likely?
Suppose weighted die makes 6 2X more likely that anything else. What is average value of outcome?

\[
(1+2+3+4+5+6)/7 = 3.86
\]

Probs: 1/7 for 1...5, and 2/7 for 6

\[
(1+2+3+4+5) \times 1/7 + 6 \times 2/7 = 3.86
\]

Expectation in General

Suppose we have some RV X
Suppose we have some function f(X)
What is the expected value of f(X)?

\[
E [f(X)] = \sum X \cdot P(X) \cdot f(X)
\]

Sums of Expectations

Suppose we have f(X) and g(Y).
What is the expected value of f(X) + g(Y)?

\[
\mathbb{E}[f(X)+g(Y)] = \sum X f(X) + \sum Y g(Y)
\]

\[
= \sum X f(X) + \sum Y g(Y)
\]

\[
= \sum X f(X) + \sum Y g(Y)
\]

\[
= \sum X f(X) + \sum Y g(Y)
\]

\[
= \mathbb{E}[f(X)] + \mathbb{E}[g(Y)]
\]