Logic Intro

CPS 270
Ron Parr
Historical Perspective I

- Logic was one of the classical foundations of AI
- Dream: A Knowledge-Based agent
 - Tell the agent facts
 - Agent uses rules of inference to deduce consequences
 - Example: prolog
- Distinction between data and program
- Embodied in field of “Expert Systems”
Example: Minesweeper

• How do you play minesweeper?
• How would you program a machine to do it?
 – Hacking
 – Search
 – Logic
• Logic approach
 – Tell the system of rules of minesweeper
 – System uses logic to make the best moves
What is logic, really?

- Syntax: Rules for constructing valid sentences
- Semantics: Relate syntax to the real world
Entailment

• Aim: Rule for generating (or testing) new sentences that are necessarily true

• The truth of sentence may depend upon the *interpretation* of the sentence
Interpretations

- An interpretation is a way of matching up objects in the universe with symbols in a sentence (or database).
- A sentence may be true in one interpretation, but false in another.
- A *necessarily true* sentence is true in all interpretations (perhaps given some premises in our KB).
Examples

• Premises (facts in our database):
 – (X or Y)
 – Not X
 – Conclude: Y is necessarily true

• Premises
 – If P then Q
 – Q
 – Conclude: P is not necessarily true
 (though might be true in some interpretations)
Soundness & Completeness

• A (set of) rule(s) of inference is sound if it generates only sentences that are entailed by the knowledge base, i.e., only necessary truths

• A (set of) rule(s) of inference is complete if it can generate all necessary truths

• Can we have one w/o the other?
Historical Perspective II

- Things that are not true necessarily but still true are sometimes said to be “contingent,” “accidental,” or “synthetic,” truths.

- A deep understanding of this distinction evolved through thousands of years of years of philosophy and mathematics.

- Arguably one of the most important intellectual accomplishments of mankind
 - Basis of mathematic proofs
 - Provides a rigorous procedure for verifying statements
Relation to SAT

• When we want to know if a sentence is satisfiable, what does this mean?

• What about #SAT?

• Why do we care?
Propositional Logic

• Propositional logic is the simplest logic
• All sentences are composed of
 – Atoms
 – Negation
 – Disjunction, conjunction (or, and)
 – Conditional, biconditionals
• Atoms can map to any proposition about the universe (depending upon the interpretation)
Checking Validity

• Classic method for checking validity: *truth table*
• Enumerate all possible values (t/f) of atomic elements of a sentence
 \[(P \lor H)\]
 \[\neg H \quad \text{Premise}
 \]
 \[P \quad \text{Conclusion}\]
• Enumerate all 4 (or more) combinations
Inference Rules

• Inference rules are (typically) sound methods of generating new sentences given a set of previous sentences

• Inference rules save us the trouble of generating truth tables all of the time
Inference Rules I

• Modus Ponens

\[
\alpha \implies \beta, \alpha \\
\downarrow \\
\beta
\]

• And-Elimination

\[
\alpha_1 \land \alpha_2 \land \ldots \land \alpha_n \\
\downarrow \\
\alpha_i
\]
Inference Rules II

- **And-Introduction**
 \[
 \alpha_1, \alpha_2, \ldots, \alpha_n \quad \Rightarrow \quad \alpha_1 \land \alpha_2 \land \ldots \land \alpha_n
 \]

- **Or-Introduction**
 \[
 \alpha_i \quad \Rightarrow \quad \alpha_1 \lor \alpha_2 \lor \ldots \lor \alpha_n
 \]
Inference Rules III

• Double Negation Elimination

\[
\begin{array}{c}
\neg\neg\alpha \\
\hline \\
\alpha \\
\end{array}
\]

• Unit Resolution

\[
\begin{array}{c}
\alpha \lor \beta, \neg\beta \\
\hline \\
\alpha \\
\end{array}
\]
Resolution

\[\alpha \lor \beta, \neg \beta \lor \gamma \]
\[\alpha \lor \gamma \]

Resolution is perhaps the most important inference rule!

Why? Resolution is both sound and complete!
Complexity of Inference

• What is the complexity of exhaustively verifying the validity of a sentence with n literals (variables)?
 \[2^n \]

• Special Case: Horn Logic
 – Horn clauses are disjunctions with at most one positive literal
 – Equivalent to \[P_1 \land P_2 \land \ldots \land P_n \Rightarrow Q \]
Remember De Morgan’s Law?

- \(\text{not}(P \text{ and } Q) = (\text{not } P) \text{ or } (\text{not } Q) \)

- \(\text{not}(P \text{ or } Q) = (\text{not } P) \text{ and } (\text{not } Q) \)

- Surprisingly, no relationship to Captain Morgan
Implications and Horn Clauses

• If P then Q
 – Same as: (not (P and (not Q)))
 – Same as: (not P) or Q
 – ...and this is horn!

• If (P1 and P2 and ... Pn) then Q
 – Same as: (not ((P1 and P2 and ... Pn) and (not Q)))
 – Same as: not (P1 and P2 and ... Pn) or Q
 – Same as: ((not P1) or (not P2) or ... (not Pn) or Q)
 – ...and this is horn!
Horn Clause Inference

• Horn clause inference is polynomial – Why?
 – Every sentence establishes exactly one new fact
 – Can add every possible new fact implied by our KB in n passes over our database

• What types of things are easy to represent with horn clauses?
 – Diagnostic rules
 – “Expert Systems”
Suppose you want to say, “If you have a runny nose and fever, then you have a cold or the flu.”

If (runny_nose and fever) then (cold or flu)

But this isn’t a horn clause:
(not runny_nose) or (not fever) or (cold) or (flu)

Does adding two separate horn clauses work?
 – (not runny_nose) or (not fever) or (cold)
 – (not runny_nose) or (not fever) or (flu)
Propositional Logic Conclusion

- Logic gives formal rules for reasoning
- Necessarily true = true in all interpretations
- Contrast with CSPs: Satisfiable = true in some, but not necessarily all interpretations
- Sound inference rules generate only necessary truths
- Resolution is a sound and complete inference rule
- Inference with a horn KB is poly time