What is Search?

• Search is a basic problem-solving method
• We start in an initial state
• We examine states that are (usually) connected by a sequence of actions to the initial state
• Note: Search is (usually) a thought experiment (separate topic: Real Time Search)

• We aim to find a solution, which is a sequence of actions that brings us from the initial state to the goal state, minimizing cost
Search vs. Web Search

• When we issue a search query using Google, does Google really go poking around the web for us?

• Not in real time!
• Google spiders the web continually, caches results
• Uses page rank algorithm to find the most “popular” web pages that are consistent with your query

Overview

• Problem Formulation
• Uninformed Search
 – DFS, BFS, IDDFS, etc.
• Informed Search
 – Greedy, A*
• Properties of Heuristics
Problem Formulation

• Four components of a search problem
 – Initial State
 – Actions
 – Goal Test
 – Path Cost
• Optimal solution = lowest path cost to goal

Example: Path Planning

Find shortest route from one city to another using highways.
Example 8(15)-puzzle

Possible Start State

Solution

Goal State

Possible

Actions: UP, DOWN, RIGHT, LEFT

“Real” Problems

• Robot motion planning
• Drug design
• Logistics
 – Route planning
 – Tour Planning
• Assembly sequencing
• Internet routing
Why Use Search?

• Other algorithms exist for these problems:
 – Dijkstra’s Algorithm
 – Dynamic programming
 – All-pairs shortest path
• Use search when it is too expensive to enumerate all states
 – 8-puzzle has 362,800 states
 – 15-puzzle has 1.3 trillion states
 – 24-puzzle has 10^{25} states

Basic Search Concepts

• Assume a tree-structured space (for now)
• Nodes: Places in search tree
 (states exist in the problem space)
• Search tree: portion of state space visited so far
• Actions: Connect states to next states
• Expansion: Generation of next states for a state
• Frontier: Set of states visited, but not expanded
• Branching factor: Max no. of successors = b
• Goal depth: Depth of shallowest goal = d
Example Search Tree

b=2

Frontier

8-puzzle
Generic Search Algorithm

Function Tree-Search(problem, Queuing-Fn)

 fringe = Make-Queue(Make-Node(Initial-State(problem)))
 loop do
 if empty(fringe) then return failure
 node = pop(fringe)
 if Goal-Test(problem, state) then return node
 fringe = Add-To-Queue(fringe, expand(node, problem))
 end

Interesting details are in the implementation of Add-To-Queue

Evaluating Search Algorithms

- Completeness:
 - Is the algorithm guaranteed to find a solution when there is one?

- Optimality:
 - Does the algorithm find the optimal solution?

- Time complexity
- Space complexity
Uninformed Search: BFS

Frontier is a FIFO

```
  1
 / \
2   3
|   |
4   5   6   7
```

BFS Properties

- Completeness: \(\gamma \)
- Optimality: \(\gamma \) (for uniform cost, \(N \) for arbitrary cost)
- Time complexity: \(O(b^{d+1}) \)
- Space complexity: \(O(b^{d + 1}) \)
Uninformed Search: DFS

Frontier is a LIFO

DFS Properties

- Completeness: N (unless tree is finite)
- Optimality: N
- Time complexity: $O(b^{m+1})$ ($m =$ depth we hit, $m>d$?)
- Space complexity: $O(bm)$
Iterative Deepening

- Want:
 - DFS memory requirements
 - BFS optimality, completeness
- Idea:
 - Do a depth-limited DFS for depth m
 - Iterate over m
IDDFS Properties

- Completeness: γ
- Optimality: γ (whenever BFS is optimal)
- Time complexity: $O(b^{d+2})$
- Space complexity: $O(bd)$

IDDFS vs. BFS

Theorem: IDDFS visits no more than twice as many nodes for a binary tree as BFS.

Proof: Assume the tree bottoms out at depth d, BFS visits:

$$2^{d+1} - 1$$

In the worst case, IDDFS does no more than:

$$\sum_{i=1}^{d} (2^{i+1} - 1) = \sum_{i=1}^{d} 2^{i+1} - \sum_{i=1}^{d} 1 = (2^{d+2} - 2) - d = 2(2^{d+1} - 1) - 2 = 2 \times BFS(d)$$

What about b-ary trees? IDDFS relative cost is lower!
Bi-directional Search

\[b^{d/2} + b^{d/2} \ll b^d \]

Issues with Bi-directional Search

- Uniqueness of goal
 - Suppose goal is parking your car
 - Huge no. of possible goal states
 (configurations of other vehicles)
- Invertability of actions
What About Repeated States (graphs)

- Can cause incompleteness or enormous runtimes
- Can maintain list of previously visited states to avoid this
 - If new path to the same state has greater cost, don’t pursue it further
 - Leads to time/space tradeoff
- “Algorithms that forget their history are doomed to repeat it” [Russell and Norvig]

Informed Search

- Idea: Give the search algorithm hints
- Heuristic function: $h(x)$
- $h(x) = \text{estimate of cost to goal from } x$
- If $h(x)$ is 100% accurate, then we can find the goal in $O(bd)$ time
Greedy Search

- Expand node with lowest $h(x)$
- Optimal if $h(x)$ is 100% correct
- How can we get into trouble with this?

What Price Greed?

What’s broken with greedy search?
A*

- Path cost so far: $g(x)$
- Total cost estimate: $f(x) = g(x) + h(x)$
- Maintain frontier as a priority queue
- $O(bd)$ time if h is 100% accurate
- We want h to be an admissible heuristic
- Admissible: never overestimates cost

Some A* Properties

- Implies $h(x)=0$ if x is a goal state
- Implies $f(x)=$ cost to goal if x is a goal state and x is popped off the queue

- What if $h(x)=0$ for all x?
 - Is this admissible?
 - What does the algorithm do?
Optimality of A*

- If h is admissible, A^* is optimal
- Proof (by contradiction):
 - Suppose a suboptimal solution node n with solution value $f(n) > C^*$ is about to be expanded (where C^* is optimal)
 - Let n^* be a goal state found on optimal path
 - There must be some node n' that is currently in the fringe and on the path to n^*
 - We have $f(n) > C^*$, and $f(n') = g(n') + h(n') \leq C^*$
 - But then, n' should be expanded first (contradiction)

Does A^* fix the greedy problem?

```
Initial State    h=1  h=1  h=1  h=1  h=1  Goal
h=1  h=1  h=1  h=1  h=1
h=2
```
A* is optimally efficient

- **A* is optimally efficient**: Any other optimal algorithm must expand at least the nodes A* expands (assuming both use the same, admissible h)

- **Proof**:
 - Besides solution, A* expands the nodes with $g(n) + h(n) < C^*$
 - Assuming it does not expand non-solution nodes with $g(n) + h(n) = C^*$
 - Any other optimal algorithm must expand at least these nodes (since there may be a better solution there)

Properties of Heuristics

- h_2 dominates h_1 if $h_2(x) > h_1(x)$ for all x
- Does this mean that h_2 is better?

- Suppose you have multiple admissible heuristics. How do you combine them?
Designing heuristics

• One strategy for designing heuristics: relax the problem
• “Number of misplaced tiles” heuristic corresponds to relaxed problem where tiles can jump to any location, even if something else is already there
• “Sum of Manhattan distances” corresponds to relaxed problem where multiple tiles can occupy the same spot
• The ideal relaxed problem is
 – easy to solve,
 – not much cheaper to solve than original problem
• Some programs can successfully automatically create heuristics