CPS 270
Alternative/Advanced Search Techniques
Ron Parr

With thanks to Vince Conitzer for LP,(M)IP examples.

Overview

• Memory-bounded Search

• Searching with Incomplete Information

• Local Search and Optimization
Memory-bounded Search: Why?

- We run out of memory before we run out of time.
- Problem: Need to remember entire search horizon
- Solution: Remember only a partial search horizon

- Issue: Maintaining optimality, completeness
- Issue: How to minimize time penalty

Attempt 1: IDA*

- Iterative deepening A*
- Idea: Like IDDFS, but use the f cost as a cutoff
 - Cutoff all searches with f > 1, then f > 2, f > 3, etc.
 - Motivation: Cut off bad-looking branches early
- Problems:
 - Excessive node regeneration
 - Can still use a lot of memory

Cutoff = 3
Attempt 2: RBFS

- Recursive best first search
- Objective: Linear space

- Idea: Remember best alternative
- Rewind, try alternatives if “best first” path gets too expensive
- Remember costs on the way back up

Assume h=1, initially along this path.

Replace with alt = 11

alt = 11

alt = 13

alt = 14

alt = 15

h=3

Problem: Thrashing!
SMA*

- Idea: Use all of available memory
- Discard the worst leaf when memory starts to run out, to make room for new leaves
- Values get backed up to parents
- Optimal if solution fits in memory
- Complete
- Thrashing still possible

Searching with Partial Information

- Multiple state problems
 - Several possible initial states
- Contingency problems
 - Several possible outcomes for each action
- Exploration problems
 - Outcomes of actions not known \textit{a priori}, must be discovered by trying them
Example

- Initial state may not be detectable
 - Suppose sensors for a nuclear reactor fail
 - Need safe shutdown sequence despite ignorance of some aspects of state

- This complicates search *enormously*

- In the worst case, contingent solution could cover the entire state space

State Sets

- Idea:
 - Maintain a set of candidate states
 - Each search node represents a set of states
 - Can be hard to manage if state sets get large

- If states have probabilistic outcomes, we maintain a probability distribution over states
Searching in Unknown Environments

- What if we don’t know the consequences of actions before we try them?
- Often called on-line search
- Goal: Minimize competitive ratio
 - Actual distance/distance traveled if model known
 - Problematic if actions are irreversible
 - Problematic if links can have unbounded cost

Optimization

- Solution is more important than path
- Interested in minimizing or maximizing some function of the problem state
 - Find a protein with a desirable property
 - Optimize circuit layout
 - Satisfy requirements for your major

- History of search steps not worth the trouble
State Space Landscape

Goal: Find values of problem features that maximize objective function.

Note: This is conceptual. Often this function is not smooth.

Hill Climbing

- Idea: Try to climb up the state space landscape to find a setting of the problem features with high value.
- Approaches:
 - Steepest ascent
 - Stochastic – pick one of the good ones
 - First choice
- This is a *greedy* procedure
Limitations of Hill Climbing

- Local maxima
- Ridges – direction of ascent is at 45 degree angle to any of the local changes
- Plateaux – flat expanses

Getting Unstuck

- Random restarts
- Simulated annealing
 - Take downhill moves with small probability
 - Probability of moving downhill decreases with
 - Number of iterations
 - Steepness of downhill move
 - If system is “cooled” slowly enough, will find global optimal w.p. 1
 - Motivated by the annealing of metals and glass
Genetic Algorithms

- GAs are hot in some circles
- Biological metaphors to motivate search
- Organism is a word from a finite alphabet (organisms = states)
- Fitness of organism measures its performance on task (fitness = objective)
- Uses multiple organisms (parallel search)
- Uses mutation (random steps)

Crossover

Crossover is a distinguishing feature of GAs:

Randomly select organisms for “reproduction” in accordance with their fitness. More “fit” individuals are more likely to reproduce.

Reproduction is sexual and involves crossover:

Organism 1: 110010010
Organism 2: 000101110
Offspring: 110011110
Is this a good idea?

• Has worked well in some examples
• Can be very brittle
 – Representations must be carefully engineered
 – Sensitive to mutation rate
 – Sensitive to details of crossover mechanism
• For the same amount of work, stochastic variants of hill climbing often do better
• Hard to analyze; needs more rigorous study

Continuous Spaces

• In continuous spaces, we don’t need to “probe” to find the values of local changes

• If we have a closed-form expression for our objective function, we can use the calculus

• Suppose objective function is: \(f(x_1, y_1, x_2, y_2, x_3, y_3) \)

• Gradient tells us direction and steepness of change

\[
\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3} \right)
\]
Following the Gradient

\[
x = (x_1, y_1, x_2, y_2, x_3, y_3)
\]

\[
x \leftarrow x + \alpha \nabla f(x)
\]

For sufficiently small step sizes, this will converge to a local optimum.

If gradient is hard to compute:

- Compute empirical gradient
- Compare with classical hill climbing

Constrained Optimization

- Don’t forget about the easier cases
 - If you have a linear objective function with linear constraints, solve as a linear program:
 - Maximize (minimize):
 \[
 f(x)
 \]
 - Subject to:
 \[
 Ax \leq b \quad (Ax \geq b)
 \]
 - Can be done in polynomial time
 - Can solve some quadratic programs in poly time
Linear programs: example

• Make reproductions of 2 paintings

\[
\begin{align*}
\text{maximize } & 3x + 2y \\
\text{subject to } & 4x + 2y \leq 16 \\
& x + 2y \leq 8 \\
& x + y \leq 5 \\
& x \geq 0 \\
& y \geq 0
\end{align*}
\]

• Painting 1:
 • Sells for $30
 • Requires 4 units of blue, 1 green, 1 red

• Painting 2
 • Sells for $20
 • Requires 2 blue, 2 green, 1 red

• We have 16 units blue, 8 green, 5 red

Solving the linear program graphically

\[
\begin{align*}
\text{maximize } & 3x + 2y \\
\text{subject to } & 4x + 2y \leq 16 \\
& x + 2y \leq 8 \\
& x + y \leq 5 \\
& x \geq 0 \\
& y \geq 0
\end{align*}
\]

optimal solution: \(x=3, y=2\)
Modified LP

\[\text{maximize } 3x + 2y \]
\[\text{subject to} \]
\[4x + 2y \leq 15 \]
\[x + 2y \leq 8 \]
\[x + y \leq 5 \]
\[x \geq 0 \]
\[y \geq 0 \]

Optimal solution: \(x = 2.5, \ y = 2.5 \)
Solution value = 7.5 + 5 = 12.5

Half paintings?

Integer (linear) program

\[\text{maximize } 3x + 2y \]
\[\text{subject to} \]
\[4x + 2y \leq 15 \]
\[x + 2y \leq 8 \]
\[x + y \leq 5 \]
\[x \geq 0, \text{ integer} \]
\[y \geq 0, \text{ integer} \]

optimal LP solution: \(x=2, \ y=3 \) (objective 12)

optimal LP solution: \(x=2.5, \ y=2.5 \) (objective 12.5)
Mixed integer (linear) program

\[\text{maximize } \quad 3x + 2y \]

subject to

\[4x + 2y \leq 15 \]

\[x + 2y \leq 8 \]

\[x + y \leq 5 \]

\[x \geq 0 \]

\[y \geq 0, \text{ integer} \]

Solving linear/integer programs

- Linear programs can be solved efficiently
 - Simplex, ellipsoid, interior point methods...
- (Mixed) integer programs are NP-hard to solve
 - Quite easy to model many standard NP-complete problems as integer programs (try it!)
 - Solvers use search-like algorithms such as branch and bound
- Standard packages for solving these
 - GNU Linear Programming Kit, CPLEX, ...
- **LP relaxation** of (M)IP: remove integrality constraints
 - Gives upper bound on MIP (~admissible heuristic)
Conclusions and Parting Thoughts

- There are search algorithms for almost every situation
- Many problems can be formulated as search
- While search is a very general method, it can sometimes outperform special-purpose methods