Introduction to Approximation Algorithms

Ron Parr
CPS 570

Covered Today

- Approximation in general
- Set cover
- A greedy algorithm for set cover
- Submodularity
- A generic greedy algorithm exploiting submodularity
Why use approximation?

- Lots of problems we want to solve are NP-hard optimization problems, often with associated NP-complete decision problems

- Different notions of approximation
 - Search for a “pretty good” answer
 - Return an optimal answer in some cases (fail in others?)
 - Return an answer that is an additive factor from optimal: result = optimal + f
 - Return an answer that a multiplicative factor from optimal: result/approximation = f
 - For a given resource level, achieve a lower performance value?
 - For a given performance level, consume more resources?

Set Cover

- Input:
 - A set of atoms: S=s_1...s_n
 - A set of sets: C=c_1...c_m
 - Each set contains 1 or more atoms

- Optimization question: Can you choose k elements from C such that every element of S is in at least one of these k? (This is called a **cover**.)

- Decision question: Exist a cover of size k or less?
Set Cover Example

14 atoms
5 sets

Real Problems Abstracted by Set Cover

• Sensor placement:
 – You have sensors to place in m different locations
 – Each location can observe some fraction of your n targets
 – Find the most efficient sensor allocation to see all targets

• Buying bundles of goods
 – Different vendors offer package deals on different combinations of products (flat rate shipping)
 – Buy all the products you need in the smallest number of transactions

• Choosing advertising outlets
 – Different stations (or newspapers) cover different, possibly overlapping markets
 – Try to cover markets with smallest number of ads
Hardness of Set Cover

• Karp showed that set cover is NP-complete (classic paper on reading list)

• Satisfiability reduces to clique
• Clique reduces to node cover
• Node cover reduces to set cover

Node Cover

• Input:
 — Graph G=E,V

• Optimization question: What is the smallest set of vertices such that every edge is incident upon one of the vertices
• Decision question: Does there exist a set of nodes of size k such that every edge is incident on one node in k
Reduce Node Cover to Set Cover

• Remember: Must solve node cover w/set cover
• For each edge in the node cover problem, we create an atom in the set cover problem
• For each node in the node cover problem, we create a set s.t. elements of the set correspond to edges in the node cover problem
• Observe that a set cover of size k exists iff a node cover of size k exists

So, what do we do?

• Settle for a larger k?
 -- What if we don’t need the absolute smallest k?
 -- Is there an algorithm that gives something close to the smallest?

• Settle for less than full coverage
 -- What if we have only k resources?
 -- Is there an algorithm that gives us something close to the best we can hope for using k?
Greedy Algorithms

• Greedy algorithms are a general class of algorithms that, loosely speaking, make a choice that gives maximal short term improvement, without considering subsequent choices

• Examples of greedy behavior:
 – Picking the class that is most interesting to you first (ignoring that this might cause scheduling problems with other classes)
 – Positioning a sensor so that it sees the highest number of targets (while ignoring subsequent choices)

Greedy Set Cover

• Repeat until done*
 – For each set not added, check how many previously uncovered atoms it would add
 – Add the set with the biggest increase in the number of atoms covered

• What is “done”
 – Max of k elements added, or
 – All elements covered
What does greedy do here?

What price greed?

- Assume we have a budget of \(k \)
- Optimal picks: \(O_1 \ldots O_k \), covering \(n \) atoms
- Greedy picks \(G_1 \ldots G_k \), covering \(x \) atoms
- What is the relationship between \(x \) and \(n \)?
What price greed (2)?

- $o_i =$ number of new elements covered by O_i
- $g_i =$ number of new elements covered by G_i

- $n = o_1 + o_2 + ... + o_k$
- $x = g_1 + g_2 + ... + g_k$

What price greed (3)?

- Suppose $o_i > g_i$
- Q: Why didn’t greedy pick O_i?
- A: The only reason would be if greedy already covered $o_i - g_i$ of the elements in o_i in some g_j, $j < i$
- $x \geq (o_1 - g_1) + (o_2 - g_2) + ... + (o_k - g_k) = n - x$
- $2x \geq n$
- $x \geq n/2$

- Conclusion: For fixed k, greedy gets a least half as much coverage as optimal
What about minimizing k?

• Suppose optimal coverage uses k to cover n atoms
• Assume we run greedy until it covers everything, taking h>k resources
• Analyze greedy’s h choices in batches of k
 – Greedy covers at least n/2 in first batch of k
 – Second batch of k covers at least half of remaining atoms. Why? Same analysis can be repeated.

• Conclusion: greedy requires at most k*\log_2 n resources
• Note: Our bounds here are not tight

Applying to Other Problems

• If we have a good approximation scheme for one NP-complete problem, does this imply a good approximation scheme for others?
• Depends upon what what you mean by good...
• The polynomial factor can be a killer here
• Conclusion: Approximation algorithms will tend to be problem specific unless one discovers a more general approach to approximation
Submodularity

• f is a function defined on sets
• Submodular if:

\[X, Y \subseteq \Omega, X \subseteq Y : f(X \cup \{z\}) - f(X) \geq f(Y \cup \{z\}) - f(Y) \]

• Monotone if

\[X \subseteq Y : f(Y) \geq f(X) \]

Set Cover?

• Does set cover fit this framework?
• $f =$ number of atoms covered
• Set $\Omega = C$

• Is it submodular?
• Is it monotone?
Maximizing Monotone Submodular Set Functions

• This is NP-hard in general 😞
• Greedy algorithm for maximizing monotone submodular set functions is a 1-1/e factor from optimal
• Can use similar argument to set cover to get a resource bound

• This provides a generic procedure for analyzing greedy algorithms for certain classes of hard problems 😊

Greedy Set Cover and Submodularity

• Our greedy algorithm for set cover can be understood as an instance of the greedy approach for submodular set functions

• Conclusion: We get a tighter bound for free!
• (1-1/e > ½)
Conclusions

- Avoid worst consequences NP-hardness with clever approximation algorithms (or clever analysis of simple algorithms)
- Caveats:
 - Not all problems admit good approximate solutions
 - Approximation techniques for particular problems don’t always carry over to others
- Some generic approaches exist:
 - Greedy algorithms sometimes do well
 - Submodularity provides a generic framework for analyzing certain types of greedy algorithms
 - Other families of approaches exist as well – rounding, LP relaxations, etc.